Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Proteome Res ; 23(10): 4579-4588, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39307995

RESUMEN

This study aimed to investigate the dysregulated proteins and the underlying mechanisms of gastric precancerous lesions. Proteomic and phosphoproteomic methods were used to characterize the proteome and phosphoproteome profiles of N-methyl-N-nitro-N-nitrosoguanidine (MNNG)-induced gastric precancerous lesions. The hub differentially expressed proteins (DEPs) and phosphoproteins (DEPPs) were identified by using differential expression and protein-protein interaction network analyses. Western blot assay, quantitative reverse transcription (qRT)-PCR, and CCK-8 assays detected the expression of Rps3, N-cadherin, E-cadherin, AKT, p-AKT, and ß-catenin and verified the roles of Rps3 on the MNNG-induced human gastric epithelial cell line (GES-1) cells. Hub DEPs and phosphoproteins Rps3, Akt1, and Ctnnb1 were significantly correlated with five dendritic cells (DCs) pathways, and Akt1 and Ctnnb1 were significantly negatively correlated with Rps3. MNNG administration markedly reduced the Rps3 mRNA and protein expression levels (all P < 0.05). Overexpression of Rps3 significantly inhibited tumorigenesis of MNNG-induced GES-1 cells (all P < 0.01) and changed the protein levels of N-cadherin, E-cadherin, AKT, p-AKT, and ß-catenin. Similarly, SC79 treatment substantially increased the expression of interleukin (IL)-6, IL-10, and vascular endothelial growth factor (all P < 0.05). Rps3 was poorly expressed in precancerous gastric lesions. Correspondingly, overexpression of Rps3 promoted DC maturation via the AKT/ß-catenin pathway, inhibiting the progression of gastric precancerous lesions.


Asunto(s)
Células Dendríticas , Lesiones Precancerosas , Proteínas Proto-Oncogénicas c-akt , Proteínas Ribosómicas , Neoplasias Gástricas , beta Catenina , beta Catenina/metabolismo , beta Catenina/genética , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Lesiones Precancerosas/patología , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/inducido químicamente , Lesiones Precancerosas/genética , Células Dendríticas/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Metilnitronitrosoguanidina/farmacología , Transducción de Señal , Animales , Proteómica/métodos , Mapas de Interacción de Proteínas , Línea Celular , Ratones
2.
World J Gastrointest Oncol ; 16(8): 3635-3650, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39171177

RESUMEN

BACKGROUND: Curcumin originates from the natural herb turmeric, and its antitumor effects have been known about for a long time. However, the mechanism by which curcumin affects gastric cancer (GC) has not been elucidated. AIM: To elucidate the potential mechanisms of curcumin in the treatment of GC. METHODS: Network pharmacological approaches were used to perform network analysis of Curcumin. We first analyzed Lipinski's Rule of Five for the use of Curcumin. Curcumin latent targets were predicted using the PharmMapper, SwissTargetPrediction and DrugBank network databases. GC disease targets were mined through the GeneCard, OMIM, DrugBank and TTD network databases. Then, GO enrichment, KEGG enrichment, protein-protein interaction (PPI), and overall survival analyses were performed. The results were further verified through molecular docking, differential expression analysis and cell experiments. RESULTS: We identified a total of 48 curcumin-related genes with 31 overlapping GC-related targets. The intersection targets between curcumin and GC have been enriched in 81 GO biological processes and 22 significant pathways. Following PPI analysis, 6 hub targets were identified, namely, estrogen receptor 1 (ESR1), epidermal growth factor receptor (EGFR), cytochrome P450 family 3 subfamily A member 4 (CYP3A4), mitogen-activated protein kinase 14 (MAPK14), cytochrome P450 family 1 subfamily A member 2 (CYP1A2), and cytochrome p450 family 2 subfamily B member 6 (CYP2B6). These factors are correlated with decreased survival rates among patients diagnosed with GC. Molecular docking analysis further substantiated the strong binding interactions between Curcumin and the hub target genes. The experimental findings demonstrated that curcumin not only effectively inhibits the growth of BGC-823 cells but also suppresses their proliferation. mRNA levels of hub targets CYP3A4, MAPK14, CYP1A2, and CYP2B6 in BGC-823 cells were significantly increased in each dose group. CONCLUSION: Curcumin can play an anti-GC role through a variety of targets, pathways and biological processes.

3.
World J Gastrointest Oncol ; 16(7): 3211-3229, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39072182

RESUMEN

BACKGROUND: Gastric intestinal metaplasia (IM) is a precancerous lesion that is associated with an elevated risk of gastric carcinogenesis. Weiwei Decoction (WWD) is a promising traditional Chinese herbal formula widely employed in clinical for treating IM. Previous studies suggested the potential involvement of the olfactomedin 4 (OLFM4)/nucleotide-binding oligomerization domain 1 (NOD1)/caudal-type homeobox gene 2 (CDX2) signaling pathway in IM regulation. AIM: To verify the regulation of the OLFM4/NOD1/CDX2 pathway in IM, specifically investigating WWD's effectiveness on IM through this pathway. METHODS: Immunohistochemistry for OLFM4, NOD1, and CDX2 was conducted on tissue microarray. GES-1 cells treated with chenodeoxycholic acid were utilized as IM cell models. OLFM4 short hairpin RNA (shRNA), NOD1 shRNA, and OLFM4 pcDNA were transfected to clarify the pathway regulatory relationships. Protein interactions were validated by co-immunoprecipitation. To explore WWD's pharmacological actions, IM rat models were induced using N-methyl-N'-nitro-N-nitrosoguanidine followed by WWD gavage. Gastric cells were treated with WWD-medicated serum. Cytokines and chemokines content were assessed by enzyme-linked immunosorbent assay and quantitative reverse transcription polymerase chain reaction. RESULTS: The OLFM4/NOD1/CDX2 axis was a characteristic of IM. OLFM4 exhibited direct binding and subsequent down-regulation of NOD1, thereby sustaining the activation of CDX2 and promoting the progression of IM. WWD improved gastric mucosal histological lesions while suppressing intestinal markers KLF transcription factor 4, villin 1, and MUCIN 2 expression in IM rats. Regarding pharmacological actions, WWD suppressed OLFM4 and restored NOD1 expression, consequently reducing CDX2 at the mRNA and protein levels in IM rats. Parallel regulatory mechanisms were observed at the protein level in IM cells treated with WWD-medicated serum. Furthermore, WWD-medicated serum treatment strengthened OLFM4 and NOD1 interaction. In case of anti-inflammatory, WWD restrained interleukin (IL)-6, interferon-gamma, IL-17, macrophage chemoattractant protein-1, macrophage inflammatory protein 1 alpha content in IM rat serum. WWD-medicated serum inhibited tumor necrosis factor alpha, IL-6, IL-8 transcriptions in IM cells. CONCLUSION: The OLFM4/NOD1/CDX2 pathway is involved in the regulation of IM. WWD exerts its therapeutic efficacy on IM through the pathway, additionally attenuating the inflammatory response.

4.
Drug Des Devel Ther ; 18: 3233-3253, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081701

RESUMEN

Gastric cancer (GC) is a prevalent gastrointestinal tumor characterized by high mortality and recurrence rates. Current treatments often have limitations, prompting researchers to explore novel anti-tumor substances and develop new drugs. Flavonoids, natural compounds with diverse biological activities, are gaining increasing attention in this regard. We searched from PubMed, Web of Science, SpringerLink and other databases to find the relevant literature in the last two decades. Using "gastric cancer", "stomach cancers", "flavonoid", "bioflavonoid", "2-Phenyl-Chromene" as keywords, were searched, then analyzed and summarized the mechanism of flavonoids in the treatment of GC. It was revealed that the anti-tumor mechanism of flavonoids involves inhibiting tumor growth, proliferation, invasion, and metastasis, as well as inducing cell death through various processes such as apoptosis, autophagy, ferroptosis, and pyroptosis. Additionally, combining flavonoids with other chemotherapeutic agents like 5-FU and platinum compounds can potentially reduce chemoresistance. Flavonoids have also demonstrated enhanced biological activity when used in combination with other natural products. Consequently, this review proposes innovative perspectives for the development of flavonoids as new anti-GC agents.


Asunto(s)
Flavonoides , Transducción de Señal , Neoplasias Gástricas , Humanos , Flavonoides/farmacología , Flavonoides/química , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Animales
5.
BMC Complement Med Ther ; 24(1): 214, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840248

RESUMEN

BACKGROUND: Traditional Chinese medicine (TCM) has been found widespread application in neoplasm treatment, yielding promising therapeutic candidates. Previous studies have revealed the anti-cancer properties of Brevilin A, a naturally occurring sesquiterpene lactone derived from Centipeda minima (L.) A.Br. (C. minima), a TCM herb, specifically against lung cancer. However, the underlying mechanisms of its effects remain elusive. This study employs network pharmacology and experimental analyses to unravel the molecular mechanisms of Brevilin A in lung cancer. METHODS: The Batman-TCM, Swiss Target Prediction, Pharmmapper, SuperPred, and BindingDB databases were screened to identify Brevilin A targets. Lung cancer-related targets were sourced from GEO, Genecards, OMIM, TTD, and Drugbank databases. Utilizing Cytoscape software, a protein-protein interaction (PPI) network was established. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene set enrichment analysis (GSEA), and gene-pathway correlation analysis were conducted using R software. To validate network pharmacology results, molecular docking, molecular dynamics simulations, and in vitro experiments were performed. RESULTS: We identified 599 Brevilin A-associated targets and 3864 lung cancer-related targets, with 155 overlapping genes considered as candidate targets for Brevilin A against lung cancer. The PPI network highlighted STAT3, TNF, HIF1A, PTEN, ESR1, and MTOR as potential therapeutic targets. GO and KEGG analyses revealed 2893 enriched GO terms and 157 enriched KEGG pathways, including the PI3K-Akt signaling pathway, FoxO signaling pathway, and HIF-1 signaling pathway. GSEA demonstrated a close association between hub genes and lung cancer. Gene-pathway correlation analysis indicated significant associations between hub genes and the cellular response to hypoxia pathway. Molecular docking and dynamics simulations confirmed Brevilin A's interaction with PTEN and HIF1A, respectively. In vitro experiments demonstrated Brevilin A-induced dose- and time-dependent cell death in A549 cells. Notably, Brevilin A treatment significantly reduced HIF-1α mRNA expression while increasing PTEN mRNA levels. CONCLUSIONS: This study demonstrates that Brevilin A exerts anti-cancer effects in treating lung cancer through a multi-target and multi-pathway manner, with the HIF pathway potentially being involved. These results lay a theoretical foundation for the prospective clinical application of Brevilin A.


Asunto(s)
Neoplasias Pulmonares , Simulación del Acoplamiento Molecular , Sesquiterpenos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Sesquiterpenos/farmacología , Sesquiterpenos/química , Lactonas/farmacología , Lactonas/química , Células A549 , Mapas de Interacción de Proteínas , Farmacología en Red , Crotonatos
8.
BMC Med Genomics ; 17(1): 69, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443946

RESUMEN

Recent evidence has shed light on the significant role of FANCD2 in cancer initiation, development, and progression. However, a comprehensive pan-cancer analysis of FANCD2 has been lacking. In this study, we have conducted a thorough investigation into the expression profiles and prognostic significance of FANCD2, as well as its correlation with clinicopathological parameters and immune cell infiltration, using advanced bioinformatic techniques. The results demonstrate that FANCD2 is significantly upregulated in various common cancers and is associated with prognosis. Notably, higher expression levels of FANCD2 are linked to poor overall survival, as indicated by Cox regression and Kaplan-Meier analyses. Additionally, we have observed a decrease in the methylation of FANCD2 DNA in some cancers, and this decrease is inversely correlated with FANCD2 expression. Genetic alterations in FANCD2 predominantly manifest as mutations, which are associated with overall survival, disease-specific survival, disease-free survival, and progression-free survival in certain tumor types. Moreover, FANCD2 exhibits a strong correlation with infiltrating cell levels, immune checkpoint genes, tumor mutation burden (TMB), and microsatellite instability (MSI). Enrichment analysis further highlights the potential impact of FANCD2 on Fanconi anemia (FA) pathway and cell cycle regulation. Through this comprehensive pan-cancer analysis, we have gained a deeper understanding of the functions of FANCD2 in oncogenesis and metastasis across different types of cancer.


Asunto(s)
Anemia de Fanconi , Humanos , Pronóstico , Carcinogénesis/genética , Transformación Celular Neoplásica , Cognición , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética
9.
Phytomedicine ; 126: 155348, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38335913

RESUMEN

BACKGROUND: (-)-Asarinin (Asarinin) is the primary component in the extract of the herb Asarum sieboldii Miq. It possesses various functions, including pain relief, anti-viral and anti-tuberculous bacilli effects, and inhibition of tumor growth. Gastric precancerous lesion (GPL) is a common but potentially carcinogenic chronic gastrointestinal disease, and its progression can lead to gastric dysfunction and cancer development. However, the protective effects of asarinin against GPL and the underlying mechanisms remain unexplored. METHODS: A premalignant cell model (methylnitronitrosoguanidine-induced malignant transformation of human gastric epithelial cell strain, MC cells) and a GPL animal model were established and then were treated with asarinin. The cytotoxic effect of asarinin was assessed using a CCK8 assay. Detection of intracellular reactive oxygen species (ROS) using DCFH-DA. Apoptosis in MC cells was evaluated using an annexin V-FITC/PI assay. We performed western blot analysis and immunohistochemistry (IHC) to analyze relevant markers, investigating the in vitro and in vivo therapeutic effects of asarinin on GPL and its intrinsic mechanisms. RESULTS: Our findings showed that asarinin inhibited MC cell proliferation, enhanced intracellular ROS levels, and induced cell apoptosis. Further investigations revealed that the pharmacological effects of asarinin on MC cells were blocked by the ROS scavenger N-acetylcysteine. IHC revealed a significant upregulation of phospho-signal transducer and activator of transcription 3 (p-STAT3) protein expression in human GPL tissues. In vitro, asarinin exerted its pro-apoptotic effects in MC cells by modulating the STAT3 signaling pathway. Agonists of STAT3 were able to abolish the effects of asarinin on MC cells. In vivo, asarinin induced ROS accumulation and inhibited the STAT3 pathway in gastric mucosa of mice, thereby halting and even reversing the development of GPL. CONCLUSION: Asarinin induces apoptosis and delays the progression of GPL by promoting mitochondrial ROS production, decreasing mitochondrial membrane potential (MMP), and inhibiting the STAT3 pathway.


Asunto(s)
Dioxoles , Lignanos , Lesiones Precancerosas , Humanos , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Lignanos/farmacología , Proliferación Celular , Lesiones Precancerosas/inducido químicamente , Lesiones Precancerosas/tratamiento farmacológico , Lesiones Precancerosas/patología , Apoptosis , Factor de Transcripción STAT3/metabolismo , Línea Celular Tumoral
10.
Oncol Lett ; 27(2): 70, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38192676

RESUMEN

Gastric cancer (GC) is the fifth most common cause of cancer-associated deaths; however, its treatment options are limited. Despite clinical improvements, chemotherapy resistance and metastasis are major challenges in improving the prognosis and quality of life of patients with GC. Therefore, effective prognostic biomarkers and targets associated with immunological interventions need to be identified. Solute carrier family 2 member 2 (SLC2A2) may serve a role in tumor development and invasion. The present study aimed to evaluate SLC2A2 as a prospective prognostic marker and chemotherapeutic target for GC. SLC2A2 expression in several types of cancer and GC was analyzed using online databases, and the effects of SLC2A2 expression on survival prognosis in GC were investigated. Clinicopathological parameters were examined to explore the association between SLC2A2 expression and overall survival (OS). Associations between SLC2A2 expression and immune infiltration, immune checkpoints and IC50 were estimated using quantification of the tumor immune contexture from human RNA-seq data, the Tumor Immune Estimation Resource 2.0 database and the Genomics of Drug Sensitivity in Cancer database. Differential SLC2A2 expression and the predictive value were validated using the Human Protein Atlas, Gene Expression Omnibus, immunohistochemistry and reverse transcription-quantitative PCR. SLC2A2 expression was downregulated in most types of tumor but upregulated in GC. Functional enrichment analysis revealed an association between SLC2A2 expression and lipid metabolism and the tumor immune microenvironment. According to Gene Ontology term functional enrichment analysis, SLC2A2-related differentially expressed genes were enriched predominantly in 'chylomicron assembly', 'plasma lipoprotein particle assembly', 'high-density lipoprotein particle', 'chylomicron', 'triglyceride-rich plasma lipoprotein particle', 'very-low-density lipoprotein particle'. 'intermembrane lipid transfer activity', 'lipoprotein particle receptor binding', 'cholesterol transporter activity' and 'intermembrane cholesterol transfer activity'. In addition, 'cholesterol metabolism', and 'fat digestion and absorption' were significantly enriched in the Kyoto Encyclopedia of Genes and Genomes pathway analysis. Patients with GC with high SLC2A2 expression had higher levels of neutrophil and M2 macrophage infiltration and a significant inverse correlation was observed between SLC2A2 expression and MYC targets, tumor mutation burden, microsatellite instability and immune checkpoints. Furthermore, patients with high SLC2A2 expression had worse prognosis, including OS, disease-specific survival and progression-free interval. Multivariate regression analysis demonstrated that SLC2A2 could independently prognosticate GC and the nomogram model showed favorable performance for survival prediction. SLC2A2 may be a prospective prognostic marker for GC. The prediction model may improve the prognosis of patients with GC in clinical practice, and SLC2A2 may serve as a novel therapeutic target to provide immunotherapy plans for GC.

11.
Phytomedicine ; 123: 155253, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38065034

RESUMEN

BACKGROUND: Correa's cascade is a pathological process beginning from gastritis to gastric precancerous lesions, and finally to gastric carcinoma (GC). While the pathogenesis of GC remains unclear, oxidative stress plays a prominent role throughout the entire Correa's cascade process. Studies have shown that some natural products (NPs) could halt and even reverse the development of the Correa's cascade by targeting oxidative stress. METHODS: To review the effects and mechanism by which NPs inhibit the Correa's cascade through targeting oxidative stress, data were collected from PubMed, Embase, Web of Science, ScienceDirect, and China National Knowledge Infrastructure databases from initial establishment to April 2023. NPs were classified and summarized by their mechanisms of action. RESULTS: NPs, such as terpenoid, polyphenols and alkaloids, exert multistep antioxidant stress effects on the Correa's cascade. These effects include preventing gastric mucosal inflammation (stage 1), reversing gastric precancerous lesions (stage 2), and inhibiting gastric carcinoma (stage 3). NPs can directly impact the conversion of gastritis to GC by targeting oxidative stress and modulating signaling pathways involving IL-8, Nrf2, TNF-α, NF-κB, and ROS/MAPK. Among which polyphenols have been studied more and are of high research value. CONCLUSIONS: NPs display a beneficial multi-step action on the Correa's cascade, and have potential value for clinical application in the prevention and treatment of gastric cancer by regulating the level of oxidative stress.


Asunto(s)
Productos Biológicos , Carcinoma , Gastritis , Lesiones Precancerosas , Neoplasias Gástricas , Humanos , Antioxidantes/farmacología , Productos Biológicos/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/prevención & control , Lesiones Precancerosas/complicaciones , Lesiones Precancerosas/patología , Carcinoma/complicaciones
12.
Front Immunol ; 14: 1297101, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035066

RESUMEN

Gastric precancerous lesions (GPL) are a major health concern worldwide due to their potential to progress to gastric cancer (GC). Understanding the mechanism underlying the transformation from GPL to GC can provide a fresh insight for the early detection of GC. Although chronic inflammation is prevalent in the GPL, how the inflammatory microenvironment monitored the progression of GPL-to-GC are still elusive. Inflammation has been recognized as a key player in the progression of GPL. This review aims to provide an overview of the inflammatory microenvironment in GPL and its implications for disease progression and potential therapeutic applications. We discuss the involvement of inflammation in the progression of GPL, highlighting Helicobacter pylori (H. pylori) as a mediator for inflammatory microenvironment and a key driver to GC progression. We explore the role of immune cells in mediating the progression of GPL, and focus on the regulation of inflammatory molecules in this disease. Furthermore, we discuss the potential of targeting inflammatory pathways for GPL. There are currently no specific drugs for GPL treatment, but traditional Chinese Medicine (TCM) and natural antioxidants, known as antioxidant and anti-inflammatory properties, exhibit promising effects in suppressing or reversing the progression of GPL. Finally, the challenges and future perspectives in the field are proposed. Overall, this review highlights the central role of the inflammatory microenvironment in the progression of GPL, paving the way for innovative therapeutic approaches in the future.


Asunto(s)
Helicobacter pylori , Lesiones Precancerosas , Neoplasias Gástricas , Humanos , Lesiones Precancerosas/patología , Inflamación , Antioxidantes , Microambiente Tumoral
13.
Biomed Pharmacother ; 169: 115876, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37976888

RESUMEN

Long non-coding RNAs (lncRNAs) are a type of RNAs that are more than 200 nucleotides without protein-coding potential. In recent years, more and more attention has been paid to the role of lncRNAs in cancer pathogenesis. LncRNA KCNQ1 overlapping transcript 1 (KCNQ1OT1) is located on chromosome 11p15.5 with a total length of 91 kb and is highly expressed in various malignancies, which is closely related to tumor growth, lymph node metastasis, survival cycle and recurrence rate. In addition, KCNQ1OT1 is involved in the regulation of PI3K/AKT and Wnt/ß-catenin signaling pathways. In this review, the mechanism and related progress of KCNQ1OT1 in different cancers were reviewed. It was found that KCNQ1OT1 can stabilize mRNA expression through sponging miRNA, which not only induced tumor cell proliferation, migration, invasion, drug resistance, epithelial-mesenchymal transition (EMT) and inhibited cell apoptosis in vitro, but also promoted tumor growth and metastasis in vivo. Therefore, as a new biomarker and therapeutic target, KCNQ1OT1 has broad prospects for the diagnosis and treatment of different cancers.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
14.
Phytomedicine ; 119: 155023, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37586159

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder with no effective cure. Targeting endoplasmic reticulum (ER) stress pathway may offer a novel approach to ameliorate cognitive deficits in AD. Bushen-Yizhi formula (BSYZ), a traditional Chinese medicine (TCM) prescription, has shown potential benefits for AD. To facilitate the development of new therapeutic agents for AD, it is important to identify the active components and the underlying mechanisms of BSYZ against AD. PURPOSE: The aim of this study was to systematically screen the active components of BSYZ that could improve learning and memory impairment in AD by modulating ER stress pathway. METHODS: A drug-target (D-T) network was constructed to analyze the herbal components of BSYZ. Network proximity method was used to identify the potential anti-AD components that targeted ER stress and evaluate their synergistic effects. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties and the literature evidence were considered to select promising candidates for further validation. The selected components were tested in vitro using an AD cell model (APPswe-SH-SY5Y). In vivo anti-AD effects of the components were assessed in APP/PS1 double-transgenic mice. RESULTS: 58 potential anti-AD components targeting ER stress were detected by network proximity analysis, and 13 out of them were selected based on ADMET properties and literature evidence. In vitro experiments confirmed that 5 components, namely gomisin B, ß-Carotene, imperatorin, chrysophanol, and osthole (OST), exhibited anti-AD effects on the APPswe-SH-SY5Y model. Moreover, network proximity analysis suggested that OST and Gomisin B might have synergistic effects on modulating ER stress. In vivo experiments demonstrated that OST, Gomisin B, OST+Gomisin B, and BSYZ all improved learning and memory function in APP/PS1 mice. Gomisin B and OST also restored cellular morphology and tissue structure in APP/PS1 mice. Thioflavine-S (Th-S) staining revealed that they reduced amyloid plaque deposition in the brain tissue of AD model mice. The qPCR results indicated that BSYZ, OST, and Gomisin B differentially regulated IRE1α, PERK, EIF2α, DDIT3, and Caspase 12 expression levels, while the OST and Gomisin B co-administration group showed better efficacy. This trend was further confirmed by immunofluorescence experiments. CONCLUSION: This study identified the active components of BSYZ that could ameliorate learning and memory impairment in AD by targeting ER stress pathway. OST and Gomisin B exhibited synergistic effects on modulating ER stress and reducing amyloid plaque deposition in vivo. Overall, our study elucidated the molecular mechanisms of BSYZ and its active components in attenuating AD symptoms which suggested the therapeutic potential of TCM for AD.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Ratones , Humanos , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Endorribonucleasas , Placa Amiloide , Proteínas Serina-Treonina Quinasas , Ratones Transgénicos , Estrés del Retículo Endoplásmico , Modelos Animales de Enfermedad , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide
15.
Curr Drug Metab ; 24(8): 611-620, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37519003

RESUMEN

BACKGROUND: Osthole (OST) is a bioactive natural coumarin derived from the plant Cnidium monnieri (L.) Cusson fruit (She Chuang Zi), which has various pharmacological and biological activities. OST contains an α,ß- unsaturated lactone, which is an electrophilic group that tends to be metabolized into reactive metabolites (RMs). Then, RMs are able to covalently modify nucleophilic amino acid (AA) residues of target proteins. However, few researchers considered the contribution of the covalent modification induced by OST or its metabolites. OBJECTIVE: This study aims to investigate the metabolic profile and the metabolites-protein modification of OST. METHODS: The metabolites of OST were qualitatively identified using UHPLC-Q-TOF-MS. The RMs modification patterns and potentially modified AA residues were confirmed by UHPLC-Q-TOF-MS using rat liver microsomes (RLMs) and model AAs. Finally, the modified peptides derived from high-abundance microsomal peptides were separated via nano-LC-Orbitrap-MS, and then RM-modified proteins were identified using a proteome discoverer. RESULTS: In the presence of RLMs, OST could rapidly be metabolized within 1 h and hardly identified at 4 h. We detected 10 OST metabolites, 13 OST metabolites-NAC (N-acetyl cysteine) adducts, 3 NAL (N-acetyl lysine) adducts, and 11 GSH (glutathione) adducts. Furthermore, 16 RM-modified protein targets were identified, many of which are included in the essential biological processes of OST's anti-Alzheimer's disease (AD) and anti-tumor. CONCLUSION: This study provides a novel perspective on the molecular mechanism of OST's pharmacological activities, as well as identifies potential targets for further development and application of OST and other Natural products (NPs).

17.
World J Clin Cases ; 11(16): 3714-3724, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37383139

RESUMEN

Heliobacter pylori (H. pylori), a group 1 human gastric carcinogen, is significantly associated with chronic gastritis, gastric mucosal atrophy, and gastric cancer. Approximately 20% of patients infected with H. pylori develop precancerous lesions, among which metaplasia is the most critical. Except for intestinal metaplasia (IM), which is characterized by goblet cells appearing in the stomach glands, one type of mucous cell metaplasia, spasmolytic polypeptide-expressing metaplasia (SPEM), has attracted much attention. Epidemiological and clinicopathological studies suggest that SPEM may be more strongly linked to gastric adenocarcinoma than IM. SPEM, characterized by abnormal expression of trefoil factor 2, mucin 6, and Griffonia simplicifolia lectin II in the deep glands of the stomach, is caused by acute injury or inflammation. Although it is generally believed that the loss of parietal cells alone is a sufficient and direct cause of SPEM, further in-depth studies have revealed the critical role of immunosignals. There is controversy regarding whether SPEM cells originate from the transdifferentiation of mature chief cells or professional progenitors. SPEM plays a functional role in the repair of gastric epithelial injury. However, chronic inflammation and immune responses caused by H. pylori infection can induce further progression of SPEM to IM, dysplasia, and adenocarcinoma. SPEM cells upregulate the expression of whey acidic protein 4-disulfide core domain protein 2 and CD44 variant 9, which recruit M2 macrophages to the wound. Studies have revealed that interleukin-33, the most significantly upregulated cytokine in macrophages, promotes SPEM toward more advanced metaplasia. Overall, more effort is needed to reveal the specific mechanism of SPEM malignant progression driven by H. pylori infection.

18.
Mol Med Rep ; 27(6)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37144481

RESUMEN

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the cell migration and invasion assay data shown in Fig. 5C were strikingly similar to data appearing in different form in other articles by different authors at different research institutes, some of which have been retracted. Owing to the fact that the contentious data in the above article were already under consideration for publication, or had already been published, prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they agreed with the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 17: 4803­4810, 2018; DOI: 10.3892/mmr.2018.8417].

19.
Front Pharmacol ; 14: 1184250, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153789

RESUMEN

Background: Emerging evidence has suggested a pro-oncogenic role of calponin 1 (CNN1) in the initiation of a variety of cancers. Despite this, CNN1 remains unknown in terms of its effects and mechanisms on angiogenesis, prognosis, and immunology in cancer. Materials and Methods: The expression of CNN1 was extracted and analyzed using the TIMER, UALCAN, and GEPIA databases. Meanwhile, we analyzed the diagnostic value of CNN1 by using PrognoScan and Kaplan-Meier plots. To elucidate the value of CNN1 in immunotherapy, we used the TIMER 2.0 database, TISIDB database, and Sangerbox database. Gene set enrichment analysis (GSEA) was used to analyze the expression pattern and bio-progression of CNN1 and the vascular endothelium growth factor (VEGF) in cancer. The expressions of CNN1 and VEGF in gastric cancer were confirmed using immunohistochemistry. We used Cox regression analysis to investigate the association between pathological characteristics, clinical prognosis, and CNN1 and VEGF expressions in patients with gastric cancer. Results: CNN1 expression was higher in normal tissues than it was in tumor tissues of most types of cancers. However, the expression level rebounds during the development of tumors. High levels of CNN1 indicate a poor prognosis for 11 tumors, which include stomach adenocarcinoma (STAD). There is a relationship between CNN1 and tumor-infiltrating lymphocytes (TILs), and the marker genes NRP1 and TNFRSF14 of TILs are significantly related to CNN1 expression in gastric cancers. The GSEA results confirmed the lower expression of CNN1 in tumors when compared to normal tissues. However, CNN1 again showed an increasing trend during tumor development. In addition, the results also suggest that CNN1 is involved in angiogenesis. The immunohistochemistry results validated the GSEA result (take gastric cancer as an example). Cox analysis suggested that high CNN1 expression and high VEGF expression are closely associated with poor clinical prognosis. Conclusion: Our study has shown that CNN1 expression is aberrantly elevated in various cancers and positively correlates with angiogenesis and the immune checkpoint, contributing to cancer progression and poor prognosis. These results suggest that CNN1 could serve as a promising candidate for pan-cancer immunotherapy.

20.
Front Pharmacol ; 14: 1148790, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007039

RESUMEN

Menthol, a widely used natural, active compound, has recently been shown to have anticancer activity. Moreover, it has been found to have a promising future in the treatment of various solid tumors. Therefore, using literature from PubMed, EMBASE, Web of Science, Ovid, ScienceDirect, and China National Knowledge Infrastructure databases, the present study reviewed the anticancer activity of menthol and the underlying mechanism. Menthol has a good safety profile and exerts its anticancer activity via multiple pathways and targets. As a result, it has gained popularity for significantly inhibiting different types of cancer cells by various mechanisms such as induction of apoptosis, cell cycle arrest, disruption of tubulin polymerization, and inhibition of tumor angiogenesis. Owing to the excellent anticancer activity menthol has demonstrated, further research is warranted for developing it as a novel anticancer agent. However, there are limitations and gaps in the current research on menthol, and its antitumor mechanism has not been completely elucidated. It is expected that more basic experimental and clinical studies focusing on menthol and its derivatives will eventually help in its clinical application as a novel anticancer agent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA