Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Cancer Res ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775808

RESUMEN

Neuroblastoma is an embryonic cancer that contributes disproportionately to death in young children. Sequencing data have uncovered few recurrently mutated genes in this cancer, although epigenetic pathways have been implicated in disease pathogenesis. We used an expression-based computational screen that examined the impact of deubiquitinating enzymes on patient survival to identify potential new targets. We identified the histone H2B deubiquitinating enzyme USP44 as the enzyme with the greatest impact on survival in patients with neuroblastoma. High levels of USP44 significantly correlate with metastatic disease, unfavorable histology, advanced patient age, and MYCN-amplification. The subset of patients with tumors expressing high levels of USP44 had a significantly worse survival, including those with tumors lacking MYCN amplification. We showed experimentally that USP44 regulates neuroblastoma cell proliferation, migration, invasion, and neuronal development. Depletion of the histone H2B ubiquitin ligase subunit RNF20 resulted in similar findings, strongly implicating this histone mark as the target of USP44 activity in this disease. Integration of transcriptome and epigenome in analyses demonstrates a distinct set of genes that is regulated by USP44, including those in Hallmark MYC target genes in both murine embryonic fibroblasts and the SH-SY5Y neuroblastoma cell line. We conclude that USP44 is a novel epigenetic regulator that promotes aggressive features and may be a novel target in neuroblastoma. Implications: This study identifies a new genetic marker of aggressive neuroblastoma and identifies the mechanisms by which its overactivity contributes to pathophysiology in this disease.

2.
Clin Exp Gastroenterol ; 16: 29-43, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37013200

RESUMEN

Symptomatic Uncomplicated Diverticular Disease (SUDD) is a syndrome within the diverticular disease spectrum, characterized by local abdominal pain with bowel movement changes but without systemic inflammation. This narrative review reports current knowledge, delivers practical guidance, and reveals challenges for the clinical management of SUDD. A broad and common consensus on the definition of SUDD is still needed. However, it is mainly considered a chronic condition that impairs quality of life (QoL) and is characterized by persistent left lower quadrant abdominal pain with bowel movement changes (eg, diarrhea) and low-grade inflammation (eg, elevated calprotectin) but without systemic inflammation. Age, genetic predisposition, obesity, physical inactivity, low-fiber diet, and smoking are considered risk factors. The pathogenesis of SUDD is not entirely clarified. It seems to result from an interaction between fecal microbiota alterations, neuro-immune enteric interactions, and muscular system dysfunction associated with a low-grade and local inflammatory state. At diagnosis, it is essential to assess baseline clinical and Quality of Life (QoL) scores to evaluate treatment efficacy and, ideally, to enroll patients in cohort studies, clinical trials, or registries. SUDD treatments aim to improve symptoms and QoL, prevent recurrence, and avoid disease progression and complications. An overall healthy lifestyle - physical activity and a high-fiber diet, with a focus on whole grains, fruits, and vegetables - is encouraged. Probiotics could effectively reduce symptoms in patients with SUDD, but their utility is missing adequate evidence. Using Rifaximin plus fiber and Mesalazine offers potential in controlling symptoms in patients with SUDD and might prevent acute diverticulitis. Surgery could be considered in patients with medical treatment failure and persistently impaired QoL. Still, studies with well-defined diagnostic criteria for SUDD that evaluate the safety, QoL, effectiveness, and cost-effectiveness of these interventions using standard scores and comparable outcomes are needed.

3.
Front Oncol ; 12: 988972, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338721

RESUMEN

For over 100-years, genomic instability has been investigated as a central player in the pathogenesis of human cancer. Conceptually, genomic instability includes an array of alterations from small deletions/insertions to whole chromosome alterations, referred to as chromosome instability. Chromosome instability has a paradoxical impact in cancer. In most instances, the introduction of chromosome instability has a negative impact on cellular fitness whereas in cancer it is usually associated with a worse prognosis. One exception is the case of neuroblastoma, the most common solid tumor outside of the brain in children. Neuroblastoma tumors have two distinct patterns of genome instability: whole-chromosome aneuploidy, which is associated with a better prognosis, or segmental chromosomal alterations, which is a potent negative prognostic factor. Through a computational screen, we found that low levels of the de- ubiquitinating enzyme USP24 have a highly significant negative impact on survival in neuroblastoma. At the molecular level, USP24 loss leads to destabilization of the microtubule assembly factor CRMP2 - producing mitotic errors and leading to chromosome missegregation and whole-chromosome aneuploidy. This apparent paradox may be reconciled through a model in which whole chromosome aneuploidy leads to the subsequent development of segmental chromosome alterations. Here we review the mechanisms behind chromosome instability and the evidence for the progressive development of segmental alterations from existing numerical aneuploidy in support of a multi-step model of neuroblastoma progression.

4.
J Extracell Biol ; 1(5): e41, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-38939526

RESUMEN

Helminths survive within their host by secreting immunomodulatory compounds, which hold therapeutic potential for inflammatory conditions. Helminth-derived extracellular vesicles (EVs) are one such component proposed to possess immunomodulatory activities. Due to the recent discovery of helminth EVs, standardised protocols for EV separation are lacking. Excretory/secretory products of the porcine helminth, Ascaris suum, were used to compare three EV separation methods: Size exclusion chromatography (SEC), ultracentrifugation (UC) and a combination of the two. Their performance was evaluated by EV yield, sample purity and the ability of EVs to suppress lipopolysaccharide (LPS)-induced inflammation in vitro. We found that all three separation methods successfully separated helminth EVs with a similar EV yield. Functional studies showed that EVs from all three methods reduced LPS-induced levels of tumour necrosis factor (TNF-α) in a dose-dependent manner. Overall, the three separation methods showed similar performance, however, the combination of UC+SEC presented with slightly higher purity than either method alone.

5.
Front Physiol ; 12: 652198, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33986692

RESUMEN

The detrimental effects of tobacco exposure on children's health are well known. Nonetheless, the prevalence of secondhand or direct cigarette smoke exposure (CSE) in the pediatric population has not significantly decreased over time. On the contrary, the rapid incline in use of e-cigarettes among adolescents has evoked public health concerns since increasing cases of vaping-induced acute lung injury have highlighted the potential harm of these new "smoking" devices. Two pediatric populations are especially vulnerable to the detrimental effects of cigarette smoke. The first group is former premature infants whose risk is elevated both due to their prematurity as well as other risk factors such as oxygen and mechanical ventilation to which they are disproportionately exposed. The second group is children and adolescents with chronic respiratory diseases, in particular asthma and other wheezing disorders. Coronavirus disease 2019 (COVID-19) is a spectrum of diseases caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has spread worldwide over the last year. Here, respiratory symptoms ranging from mild to acute respiratory distress syndrome (ARDS) are at the forefront of COVID-19 cases among adults, and cigarette smoking is associated with worse outcomes in this population, and cigarette smoking is associated with worse outcomes in this population. Interestingly, SARS-CoV-2 infection affects children differently in regard to infection susceptibility, disease manifestations, and complications. Although children carry and transmit the virus, the likelihood of symptomatic infection is low, and the rates of hospitalization and death are even lower when compared to the adult population. However, multisystem inflammatory syndrome is recognized as a serious consequence of SARS-CoV-2 infection in the pediatric population. In addition, recent data demonstrate specific clinical patterns in children infected with SARS-CoV-2 who develop multisystem inflammatory syndrome vs. severe COVID-19. In this review, we highlight the pulmonary effects of CSE in vulnerable pediatric populations in the context of the ongoing SARS-CoV-2 pandemic.

6.
Anal Chem ; 92(15): 10274-10282, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32631050

RESUMEN

The mechanical properties of extracellular vesicles (EVs) are known to influence their biological function, in terms of, e.g., cellular adhesion, endo/exocytosis, cellular uptake, and mechanosensing. EVs have a characteristic nanomechanical response which can be probed via force spectroscopy (FS) and exploited to single them out from nonvesicular contaminants or to discriminate between subtypes. However, measuring the nanomechanical characteristics of individual EVs via FS is a labor-intensive and time-consuming task, usually limiting this approach to specialists. Herein, we describe a simple atomic force microscopy based experimental procedure for the simultaneous nanomechanical and morphological analysis of several hundred individual nanosized EVs within the hour time scale, using basic AFM equipment and skills and only needing freely available software for data analysis. This procedure yields a "nanomechanical snapshot" of an EV sample which can be used to discriminate between subpopulations of vesicular and nonvesicular objects in the same sample and between populations of vesicles with similar sizes but different mechanical characteristics. We demonstrate the applicability of the proposed approach to EVs obtained from three very different sources (human colorectal carcinoma cell culture, raw bovine milk, and Ascaris suum nematode excretions), recovering size and stiffness distributions of individual vesicles in a sample. EV stiffness values measured with our high-throughput method are in very good quantitative accord with values obtained by FS techniques which measure EVs one at a time. We show how our procedure can detect EV samples contamination by nonvesicular aggregates and how it can quickly attest the presence of EVs even in samples for which no established assays and/or commercial kits are available (e.g., Ascaris EVs), thus making it a valuable tool for the rapid assessment of EV samples during the development of isolation/enrichment protocols by EV researchers. As a side observation, we show that all measured EVs have a strikingly similar stiffness, further reinforcing the hypothesis that their mechanical characteristics could have a functional role.


Asunto(s)
Vesículas Extracelulares/química , Ensayos Analíticos de Alto Rendimiento , Microscopía de Fuerza Atómica , Nanotecnología , Animales , Ascaris suum/química , Bovinos , Células HCT116 , Humanos , Liposomas/química , Leche/química
7.
J Extracell Vesicles ; 9(1): 1741174, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32341767

RESUMEN

Identification of extracellular vesicle (EV) subpopulations remains an open challenge. To date, the common strategy is based on searching and probing set of molecular components and physical properties intended to be univocally characteristics of the target subpopulation. Pitfalls include the risk to opt for an unsuitable marker set - which may either not represent the subpopulation or also cover other unintended subpopulations - and the need to use different characterization techniques and equipment. This approach focused on specific markers may result inadequate to routinely deal with EV subpopulations that have an intrinsic high level of heterogeneity. In this paper, we show that Fourier-transform Infrared (FT-IR) spectroscopy can provide a collective fingerprint of EV subpopulations in one single experiment. FT-IR measurements were performed on large (LEVs, ~600 nm), medium (MEVs, ~200 nm) and small (SEVs ~60 nm) EVs enriched from two different cell lines medium: murine prostate cancer (TRAMP-C2) and skin melanoma (B16). Spectral regions between 3100-2800 cm-1 and 1880-900 cm-1, corresponding to functional groups mainly ascribed to lipid and protein contributions, were acquired and processed by Principal Component Analysis (PCA). LEVs, MEVs and SEVs were separately grouped for both the considered cell lines. Moreover, subpopulations of the same size but from different sources were assigned (with different degrees of accuracy) to two different groups. These findings demonstrate that FT-IR has the potential to quickly fingerprint EV subpopulations as a whole, suggesting an appealing complement/alternative for their characterization and grading, extendable to healthy and pathological EVs and fully artificial nanovesicles.

8.
J Colloid Interface Sci ; 570: 340-349, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32171928

RESUMEN

HYPOTHESIS: Extracellular Vesicles (EVs) are natural nanosized lipid vesicles involved in most intercellular communication pathways. Given their nature, they represent natural cell membrane models, with intermediate complexity between real and synthetic lipid membranes. Here we compare EVs-derived (EVSLB) and synthetic Supported Lipid Bilayers (SLBs) in the interaction with cationic superparamagnetic iron oxide nanoparticles (SPIONs). The aim is twofold: (i) exploit SPIONs as nanometric probes to investigate the features of EVSLBs as novel biogenic platforms; (ii) contribute at improving the knowledge on the behavior of SPIONs with biological interfaces. EXPERIMENTS: Quartz Crystal Microbalance, X-ray Reflectivity, Grazing-incidence Small-angle X-ray Scattering, Atomic Force Microscopy, Confocal Microscopy data on SPIONs-EVSLB were systematically compared to those on SPIONs challenging synthetic SLBs, taken as references. FINDINGS: The ensemble of experimental results highlights the much stronger interaction of SPIONs with EVSLBs with respect to synthetic SLBs. This evidence strongly supports the hypotheses on the peculiar structure of EVSLBs, with cushioned non-flat areas and extended exposed surface; in addition, it suggests that these features are relevant in the response of biogenic membranes to nano-objects. These findings contribute to the fundamental knowledge on EVSLBs, key for their development both as biomimetic membranes, or as platforms for biomedical applications.


Asunto(s)
Vesículas Extracelulares/química , Compuestos Férricos/química , Membrana Dobles de Lípidos/química , Nanopartículas/química , Animales , Línea Celular Tumoral , Membrana Dobles de Lípidos/síntesis química , Ratones , Tamaño de la Partícula , Fosfatidilcolinas/síntesis química , Fosfatidilcolinas/química , Tecnicas de Microbalanza del Cristal de Cuarzo , Propiedades de Superficie
9.
Int J Mol Med ; 43(6): 2303-2318, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31017260

RESUMEN

Down syndrome (DS) is caused by the presence of part or all of a third copy of chromosome 21. DS is associated with several phenotypes, including intellectual disability, congenital heart disease, childhood leukemia and immune defects. Specific microRNAs (miRNAs/miR) have been described to be associated with DS, although none of them so far have been unequivocally linked to the pathology. The present study focuses to the best of our knowledge for the first time on the miRNAs contained in nanosized RNA carriers circulating in the blood. Fractions enriched in nanosized RNA­carriers were separated from the plasma of young participants with DS and their non­trisomic siblings and miRNAs were extracted. A microarray­based analysis on a small cohort of samples led to the identification of the three most abundant miRNAs, namely miR­16­5p, miR­99b­5p and miR­144­3p. These miRNAs were then profiled for 15 pairs of DS and non­trisomic sibling couples by reverse transcription­quantitative polymerase chain reaction (RT­qPCR). Results identified a clear differential expression trend of these miRNAs in DS with respect to their non­trisomic siblings and gene ontology analysis pointed to their potential role in a number of typical DS features, including 'nervous system development', 'neuronal cell body' and certain forms of 'leukemia'. Finally, these expression levels were associated with certain typical quantitative and qualitative clinical features of DS. These results contribute to the efforts in defining the DS­associated pathogenic mechanisms and emphasize the importance of properly stratifying the miRNA fluid vehicles in order to probe biomolecules that are otherwise hidden and/or not accessible to (standard) analysis.


Asunto(s)
Síndrome de Down/genética , Perfilación de la Expresión Génica , MicroARNs/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Síndrome de Down/sangre , Femenino , Humanos , Masculino , MicroARNs/sangre , MicroARNs/aislamiento & purificación , Nanopartículas/química , Adulto Joven
10.
Cancer Immunol Res ; 7(1): 12-28, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30401679

RESUMEN

Melanoma is an immunogenic neoplasm infiltrated by T cells, although these adaptive T cells usually fail to eradicate the tumor. Plasmacytoid dendritic cells (PDCs) are potent regulators of the adaptive immune response and can eliminate melanoma cells via TLR-mediated effector functions. The PDC compartment is maintained by progressively restricted bone marrow progenitors. Terminally differentiated PDCs exit the bone marrow into the circulation, then home to lymph nodes and inflamed peripheral tissues. Infiltration by PDCs is documented in various cancers. However, their role within the melanoma immune contexture is not completely known. We found that in locoregional primary cutaneous melanoma (PCM), PDC infiltration was heterogeneous, occurred early, and was recurrently localized at the invasive margin, the site where PDCs interact with CD8+ T cells. A reduced PDC density was coupled with an increased Breslow thickness and somatic mutations at the NRAS p.Q61 codon. Compared with what was seen in PCM, high numbers of PDCs were found in regional lymph nodes, as also identified by in silico analysis. In contrast, in metastatic melanoma patients, PDCs were mostly absent in the tumor tissues and were significantly reduced in the circulation, particularly in the advanced M1c group. Exposure of circulating PDCs to melanoma cell supernatant (SN-mel) depleted of extracellular vesicles resulted in significant PDC death. SN-mel exposure also resulted in a defect of PDC differentiation from CD34+ progenitors. These findings indicate that soluble components released by melanoma cells support the collapse of the PDC compartment, with clinical implications for refining TLR agonist-based trials.


Asunto(s)
Células Dendríticas/inmunología , Melanoma/inmunología , Neoplasias Cutáneas/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Quimiocinas/inmunología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Melanoma/genética , Melanoma/patología , Persona de Mediana Edad , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Ganglio Linfático Centinela/inmunología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Adulto Joven , Melanoma Cutáneo Maligno
11.
Biochem J ; 475(8): 1455-1472, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29599122

RESUMEN

Intersectin 1-short (ITSN1-s) is a 1220 amino acid ubiquitously expressed scaffold protein presenting a multidomain structure that allows to spatiotemporally regulate the functional interaction of a plethora of proteins. Besides its well-established role in endocytosis, ITSN1-s is involved in the regulation of cell signaling and is implicated in tumorigenesis processes, although the signaling pathways involved are still poorly understood. Here, we identify ITSN1-s as a nucleocytoplasmic trafficking protein. We show that, by binding to importin (IMP)α, a small fraction of ITSN1-s localizes in the cell nucleus at the steady state, where it preferentially associates with the nuclear envelope and interacts with lamin A/C. However, upon pharmacological ablation of chromosome region maintenance 1 (CRM-1)-dependent nuclear export pathway, the protein accumulates into the nucleus, thus revealing its moonlighting nature. Analysis of deletion mutants revealed that the coiled coil (CC) and Src homology (SH3) regions play the major role in its nucleocytoplasmic shuttling. While no evidence of nuclear localization signal (NLS) was detected in the CC region, a functional bipartite NLS was identified within the SH3D region of ITSN1-s (RKKNPGGWWEGELQARGKKRQIGW-1127), capable of conferring energy-dependent nuclear accumulation to reporter proteins and whose mutational ablation affects nuclear import of the whole SH3 region. Thus, ITSN1-s is an endocytic protein, which shuttles between the nucleus and the cytoplasm in a CRM-1- and IMPα-dependent fashion.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Endocitosis/fisiología , alfa Carioferinas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Núcleo Celular/genética , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Humanos , Señales de Localización Nuclear , alfa Carioferinas/genética
12.
Biochemistry ; 56(48): 6401-6408, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29039925

RESUMEN

Sialidases are glycohydrolases that remove terminal sialic acid residues from oligosaccharides, glycolipids, and glycoproteins. The plasma membrane-associated sialidase NEU3 is involved in the fine-tuning of sialic acid-containing glycans directly on the cell surface and plays relevant roles in important biological phenomena such as cell differentiation, molecular recognition, and cancer transformation. Extracellular vesicles are membranous structures with a diameter of 0.03-1 µm released by cells and can be detected in blood, urine, and culture media. Among extracellular vesicles, exosomes play roles in intercellular communication and maintenance of several physiological and pathological conditions, including cancer, and could represent a useful diagnostic tool for personalized nanomedicine approaches. Using inducible expression of the murine form of NEU3 in HeLa cells, a study of the association of the enzyme with exosomes released in the culture media has been performed. Briefly, NEU3 is associated with highly purified exosomes and localizes on the external leaflet of these nanovesicles, as demonstrated by enzyme activity measurements, Western blot analysis, and dot blot analysis using specific protein markers. On the basis of these results, it is plausible that NEU3 activity on exosome glycans enhances the dynamic biological behavior of these small extracellular vesicles by modifying the negative charge and steric hindrance of their glycocalyx. The presence of NEU3 on the exosomal surface could represent a useful marker for the detection of these nanovesicles and a tool for improving our understanding of the biology of these important extracellular carriers in physiological and pathological conditions.


Asunto(s)
Membrana Celular/enzimología , Exosomas/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Neuraminidasa/metabolismo , Células HeLa , Humanos , Neuraminidasa/genética
13.
Colloids Surf B Biointerfaces ; 158: 331-338, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28711858

RESUMEN

Understanding the colloidal properties of extracellular vesicles (EVs) is key to advance fundamental knowledge in this field and to develop effective EV-based diagnostics, therapeutics and devices. Determination of size distribution and of colloidal stability of purified EVs resuspended in buffered media is a complex and challenging issue - because of the wide range of EV diameters (from 30 to 2000nm), concentrations of interest and membrane properties, and the possible presence of co-isolated contaminants with similar size and densities, such as protein aggregates and fat globules - which is still waiting to be fully addressed. We report here a fully detailed protocol for accurate and robust determination of the size distribution and stability of EV samples which leverages a dedicated combination of Fluorescence Correlation Spectroscopy (FCS) and Dynamic Light Scattering (DLS). The theoretical background, critical experimental steps and data analysis procedures are thoroughly presented and finally illustrated through the representative case study of EV formulations obtained from culture media of B16 melanoma cells, a murine tumor cell line used as a model for human skin cancers.


Asunto(s)
Vesículas Extracelulares , Animales , Línea Celular Tumoral , Dispersión Dinámica de Luz , Humanos , Ratones , Microscopía Fluorescente
14.
Sci Rep ; 6: 23550, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27009329

RESUMEN

Exosomes are gaining a prominent role in research due to their intriguing biology and several therapeutic opportunities. However, their accurate purification from body fluids and detailed physicochemical characterization remain open issues. We isolated exosomes from serum of patients with Multiple Myeloma by four of the most popular purification methods and assessed the presence of residual contaminants in the preparations through an ad hoc combination of biochemical and biophysical techniques - including Western Blot, colloidal nanoplasmonics, atomic force microscopy (AFM) and scanning helium ion microscopy (HIM). The preparations obtained by iodixanol and sucrose gradients were highly pure. To the contrary, those achieved with limited processing (serial centrifugation or one step precipitation kit) resulted contaminated by a residual matrix, embedding the exosomes. The contaminated preparations showed lower ability to induce NfkB nuclear translocation in endothelial cells with respect to the pure ones, probably because the matrix prevents the interaction and fusion of the exosomes with the cell membrane. These findings suggest that exosome preparation purity must be carefully assessed since it may interfere with exosome biological activity. Contaminants can be reliably probed only by an integrated characterization approach aimed at both the molecular and the colloidal length scales.


Asunto(s)
Fraccionamiento Celular/métodos , Exosomas/metabolismo , Mieloma Múltiple/sangre , Sacarosa/farmacología , Ácidos Triyodobenzoicos/farmacología , Núcleo Celular/metabolismo , Centrifugación por Gradiente de Densidad/métodos , Humanos , Microscopía de Fuerza Atómica/métodos , Mieloma Múltiple/metabolismo , FN-kappa B/metabolismo , Transporte de Proteínas
15.
Ann Clin Biochem ; 52(Pt 3): 337-45, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25468997

RESUMEN

BACKGROUND: Heavy/light chain assay allows the characterization and quantification of immunoglobulin light chains bound to heavy chains for each Ig'k and Ig'λ immunoglobulin class, discriminating between the involved/uninvolved isotypes in plasma cell dyscrasia. The Ig'k/Ig'λ ratio (heavy/light chain ratio) enables to monitor the trend of monoclonal component during therapy and disease evolution. OBJECTIVE: In this study, we evaluate the impact of the heavy/light chain assay in monitoring multiple myeloma patients in comparison with conventional techniques. METHODS: Serum samples of 28 patients with IgG or IgA monoclonal component were collected for a mean of 109 days and analyzed. The heavy/light chain assay was compared with classical immunoglobulin quantification (Ig'Tot), serum immunofixation electrophoresis, serum protein electrophoresis, and serum-free light chains quantification. Serum samples from 30 healthy patients were used as control (polyclonal). RESULTS: Heavy/light chain ratio and serum immunofixation electrophoresis were comparable in 86% of the cases, and free light chain ratio and heavy/light chain ratio in 71.8%. Heavy/light chain assay and Ig'Tot measurements showed a concentration-dependent agreement in monoclonal patients. The heavy/light chain assay was able to quantify the monoclonal component migrating in SPE ß region: this occurred in 10% of our IgG and 50% of our IgA patients. CONCLUSIONS: The concordance scores indicate that heavy/light chain and Ig'Tot assays show differences at high monoclonal component values. The heavy/light chain ratio, serum immunofixation electrophoresis, and free light chain ratio showed partial concordance. Our study confirmed that, in the context of heavy/light chain assay, heavy/light chain Ig'k and Ig'λ absolute values and heavy/light chain ratio are both important tools to monitor the presence of monoclonal component that are difficult to be identified in SPE.


Asunto(s)
Electroforesis/normas , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Paraproteinemias/sangre , Paraproteinemias/diagnóstico , Electroforesis/métodos , Estudios de Seguimiento , Humanos
16.
Front Immunol ; 5: 517, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25386176

RESUMEN

Multiple myeloma (MM) is a hematological malignancy caused by a microenviromentally aided persistence of plasma cells in the bone marrow. Monoclonal plasma cells often secrete high amounts of immunoglobulin free light chains (FLCs) that could induce tissue damage. Recently, we showed that FLCs are internalized in endothelial and myocardial cell lines and secreted in extracellular vesicles (EVs). MM serum derived EVs presented phenotypic differences if compared with monoclonal gammopathy of undetermined significance (MGUS) serum derived EVs suggesting their involvement in MM pathogenesis or progression. To investigate the effect of circulating EVs on endothelial and myocardial cells, we purified MM and MGUS serum derived EVs with differential ultracentrifugation protocols and tested their biological activity. We found that MM and MGUS EVs induced different proliferation and internalization rates in endothelial and myocardial cells, thus we tried to find specific targets in MM EVs docking and processing. Pre-treatment of EVs with anti-FLCs antibodies or heparin blocked the MM EVs uptake, highlighting that FLCs and glycosaminoglycans are involved. Indeed, only MM EVs exposure induced a strong nuclear factor kappa B nuclear translocation that was completely abolished after anti-FLCs antibodies and heparin pre-treatment. The protein tyrosine kinase c-src is present on MM circulating EVs and redistributes to the cell plasma membrane after MM EVs exposure. The anti-FLCs antibodies and heparin pre-treatments were able to block the intracellular re-distribution of the c-src kinase and the subsequent c-src kinase containing EVs production. Our results open new insights in EVs cellular biology and in MM therapeutic and diagnostic approaches.

17.
PLoS One ; 8(8): e70811, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23940647

RESUMEN

Plasma cell dyscrasias are immunosecretory disorders that can lead to hematological malignancies such as Multiple Myeloma (MM). MM accounts for 15% of all hematologic cancers, and those diagnosed with MM typically become severely ill and have a low life expectancy. Monoclonal immunoglobulin Free Light Chains (FLC) are present in the serum and urine of many patients with plasma cell diseases. The biological differences between monoclonal FLCs, produced under malignant or benign dyscrasias, has not yet been characterized. In the present study, we show that endothelial and heart muscle cell lines internalize kappa and lambda FLCs. After internalization, FLCs are rerouted in the extracellular space via microvesicles and exosomes that can be re-internalized in contiguous cells. Only FLCs secreted from malignant B Lymphocytes were carried in Hsp70, annexin V, and c-src positive vesicles. In both MM and AL Amyloidosis patients we observed an increase in microvesicle and exosome production. Isolated serum vesicles from MM, AL Amyloidosis and monoclonal gammopathy of undetermined significance (MGUS) patients contained FLCs. Furthermore MM and AL amyloidosis vesicles were strongly positive for Hsp70, annexin V, and c-src compared to MGUS and control patients. These are the first data implying that FLCs reroute via microvesicles in the blood stream, and also suggest a potential novel mechanism of c-src activation in plasma cell dyscrasia.


Asunto(s)
Paraproteinemias/enzimología , Vesículas Secretoras/enzimología , Familia-src Quinasas/metabolismo , Anexina A5/metabolismo , Proteína Tirosina Quinasa CSK , Células Endoteliales/metabolismo , Endotelio Vascular/patología , Activación Enzimática , Proteínas HSP70 de Choque Térmico/metabolismo , Células HeLa , Humanos , Cadenas Ligeras de Inmunoglobulina/metabolismo , Paraproteinemias/sangre , Transporte de Proteínas
18.
Traffic ; 12(11): 1604-19, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21810154

RESUMEN

Adaptor protein (AP) complexes are key factors for the spatial and temporal regulation of intracellular trafficking events. Four complexes (AP-1, -2, -3, -4) are known, among which AP-4 is only poorly characterized. Recent work suggests a role for AP-4 in the intracellular trafficking of the ß-amyloid precursor protein and molecular genetics showed that the loss of functional AP-4 is associated with congenital neuronal disorders of severe cognitive dysfunction. To unravel the molecular mechanisms controlling AP-4 functions, we established the intracellular expression of recombinant AP-4 complex. This approach combined with the analysis of mutant complexes allowed us to discover that the epsilon adaptin hinge-ear region has a function in membrane recruitment of AP-4. We further show that this process is phosphorylation dependent and involves PP2A-like protein phosphatases and a staurosporine-sensitive kinase. Deletion of the residues 839-871 in the carboxy-terminal region of the hinge of epsilon adaptin abrogated the membrane/cytosol recycling of AP-4. As targets of phosphorylation, we identified three serine residues: S847, S868 and S871. We conclude that the terminal hinge region and the appendage of the AP-4 epsilon subunit are involved in membrane association in a process that is controlled by phosphorylation and dephosphorylation events.


Asunto(s)
Complejo 4 de Proteína Adaptadora/metabolismo , Subunidades del Complejo de Proteínas Adaptadoras/metabolismo , Proteínas de la Membrana/metabolismo , Complejo 4 de Proteína Adaptadora/genética , Subunidades del Complejo de Proteínas Adaptadoras/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Citosol/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/genética , Fosforilación , Proteína Fosfatasa 2/metabolismo , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA