Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Oncogene ; 41(46): 5032-5045, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36241867

RESUMEN

Metastatic tumour progression is facilitated by tumour associated macrophages (TAMs) that enforce pro-tumour mechanisms and suppress immunity. In pulmonary metastases, it is unclear whether TAMs comprise tissue resident or infiltrating, recruited macrophages; and the different expression patterns of these TAMs are not well established. Using the mouse melanoma B16F10 model of experimental pulmonary metastasis, we show that infiltrating macrophages (IM) change their gene expression from an early pro-inflammatory to a later tumour promoting profile as the lesions grow. In contrast, resident alveolar macrophages (AM) maintain expression of crucial pro-inflammatory/anti-tumour genes with time. During metastatic growth, the pool of macrophages, which initially contains mainly alveolar macrophages, increasingly consists of infiltrating macrophages potentially facilitating metastasis progression. Blocking chemokine receptor mediated macrophage infiltration in the lung revealed a prominent role for CCR2 in Ly6C+ pro-inflammatory monocyte/macrophage recruitment during metastasis progression, while inhibition of CCR2 signalling led to increased metastatic colony burden. CCR1 blockade, in contrast, suppressed late phase pro-tumour MR+Ly6C- monocyte/macrophage infiltration accompanied by expansion of the alveolar macrophage compartment and accumulation of NK cells, leading to reduced metastatic burden. These data indicate that IM has greater plasticity and higher phenotypic responsiveness to tumour challenge than AM. A considerable difference is also confirmed between CCR1 and CCR2 with regard to the recruited IM subsets, with CCR1 presenting a potential therapeutic target in pulmonary metastasis from melanoma.


Asunto(s)
Macrófagos Alveolares , Melanoma , Ratones , Animales , Macrófagos Alveolares/metabolismo , Macrófagos/metabolismo , Melanoma/patología , Receptores de Quimiocina , Modelos Animales de Enfermedad , Pulmón/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores CCR1/genética , Receptores CCR1/metabolismo
2.
Eur J Radiol ; 126: 108934, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32217426

RESUMEN

PURPOSE: To use a novel segmentation methodology based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to define tumour subregions of liver metastases from colorectal cancer (CRC), to compare these with histology, and to use these to compare extracted pharmacokinetic (PK) parameters between tumour subregions. MATERIALS AND METHODS: This ethically-approved prospective study recruited patients with CRC and ≥1 hepatic metastases scheduled for hepatic resection. Patients underwent DCE-MRI pre-metastasectomy. Histological sections of resection specimens were spatially matched to DCE-MRI acquisitions and used to define histological subregions of viable and non-viable tumour. A semi-automated voxel-wise image segmentation algorithm based on the DCE-MRI contrast-uptake curves was used to define imaging subregions of viable and non-viable tumour. Overlap of histologically-defined and imaging subregions was compared using the Dice similarity coefficient (DSC). DCE-MRI PK parameters were compared for the whole tumour and histology-defined and imaging-derived subregions. RESULTS: Fourteen patients were included in the analysis. Direct histological comparison with imaging was possible in nine patients. Mean DSC for viable tumour subregions defined by imaging and histology was 0.738 (range 0.540-0.930). There were significant differences between Ktrans and kep for viable and non-viable subregions (p < 0.001) and between whole lesions and viable subregions (p < 0.001). CONCLUSION: We demonstrate good concordance of viable tumour segmentation based on pre-operative DCE-MRI with a post-operative histological gold-standard. This can be used to extract viable tumour-specific values from quantitative image analysis, and could improve treatment response assessment in clinical practice.


Asunto(s)
Neoplasias Colorrectales/patología , Medios de Contraste/farmacocinética , Aumento de la Imagen/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/secundario , Imagen por Resonancia Magnética/métodos , Algoritmos , Análisis por Conglomerados , Humanos , Hígado/diagnóstico por imagen , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Estudios Prospectivos
3.
IEEE Trans Biomed Eng ; 67(1): 79-87, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31034401

RESUMEN

Recent developments in laser scanning microscopy have greatly extended its applicability in cancer imaging beyond the visualization of complex biology, and opened up the possibility of quantitative analysis of inherently dynamic biological processes. However, the physics of image acquisition intrinsically means that image quality is subject to a tradeoff between a number of imaging parameters, including resolution, signal-to-noise ratio, and acquisition speed. We address the problem of geometric distortion, in particular, jaggedness artefacts that are caused by the variable motion of the microscope laser, by using a combination of image processing techniques. Image restoration methods have already shown great potential for post-acquisition image analysis. The performance of our proposed image restoration technique was first quantitatively evaluated using phantom data with different textures, and then qualitatively assessed using in vivo biological imaging data. In both cases, the presented method, comprising a combination of image registration and filtering, is demonstrated to have substantial improvement over state-of-the-art microscopy acquisition methods.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Confocal/métodos , Artefactos , Humanos , Neoplasias/irrigación sanguínea , Neoplasias/diagnóstico por imagen , Fantasmas de Imagen , Relación Señal-Ruido
4.
Comput Med Imaging Graph ; 74: 49-60, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31009928

RESUMEN

Patch-based approaches have received substantial attention over the recent years in medical imaging. One of their potential applications may be to provide more anatomically consistent ventilation maps estimated on dynamic lung CT. An assessment of regional lung function may act as a guide for radiotherapy, ensuring a more accurate treatment plan. This in turn, could spare well-functioning parts of the lungs. We present a novel method for lung ventilation estimation from dynamic lung CT imaging, combining a supervoxel-based image representation with deformations estimated during deformable image registration, performed between peak breathing phases. For this we propose a method that tracks changes of the intensity of previously extracted supervoxels. For the evaluation of the method we calculate correlation of the estimated ventilation maps with static ventilation images acquired from hyperpolarized Xenon129 MRI. We also investigate the influence of different image registration methods used to estimate deformations between the peak breathing phases in the dynamic CT imaging. We show that our method performs favorably to other ventilation estimation methods commonly used in the field, independently of the image registration method applied to dynamic CT. Due to the patch-based approach of our method, it may be physiologically more consistent with lung anatomy than previous methods relying on voxel-wise relationships. In our method the ventilation is estimated for supervoxels, which tend to group spatially close voxels with similar intensity values. The proposed method was evaluated on a dataset consisting of three lung cancer patients undergoing radiotherapy treatment, and this resulted in a correlation of 0.485 with XeMRI ventilation images, compared with 0.393 for the intensity-based approach, 0.231 for the Jacobian-based method and 0.386 for the Hounsfield units averaging method, on average. Within the limitation of the small number of cases analyzed, results suggest that the presented technique may be advantageous for CT-based ventilation estimation. The results showing higher values of correlation of the proposed method demonstrate the potential of our method to more accurately mimic the lung physiology.


Asunto(s)
Presentación de Datos , Pulmón/diagnóstico por imagen , Pulmón/fisiología , Respiración , Algoritmos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Imagen por Resonancia Magnética
5.
Med Phys ; 45(11): 4986-5003, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30168159

RESUMEN

PURPOSE: Compensation for respiratory motion is important during abdominal cancer treatments. In this work we report the results of the 2015 MICCAI Challenge on Liver Ultrasound Tracking and extend the 2D results to relate them to clinical relevance in form of reducing treatment margins and hence sparing healthy tissues, while maintaining full duty cycle. METHODS: We describe methodologies for estimating and temporally predicting respiratory liver motion from continuous ultrasound imaging, used during ultrasound-guided radiation therapy. Furthermore, we investigated the trade-off between tracking accuracy and runtime in combination with temporal prediction strategies and their impact on treatment margins. RESULTS: Based on 2D ultrasound sequences from 39 volunteers, a mean tracking accuracy of 0.9 mm was achieved when combining the results from the 4 challenge submissions (1.2 to 3.3 mm). The two submissions for the 3D sequences from 14 volunteers provided mean accuracies of 1.7 and 1.8 mm. In combination with temporal prediction, using the faster (41 vs 228 ms) but less accurate (1.4 vs 0.9 mm) tracking method resulted in substantially reduced treatment margins (70% vs 39%) in contrast to mid-ventilation margins, as it avoided non-linear temporal prediction by keeping the treatment system latency low (150 vs 400 ms). Acceleration of the best tracking method would improve the margin reduction to 75%. CONCLUSIONS: Liver motion estimation and prediction during free-breathing from 2D ultrasound images can substantially reduce the in-plane motion uncertainty and hence treatment margins. Employing an accurate tracking method while avoiding non-linear temporal prediction would be favorable. This approach has the potential to shorten treatment time compared to breath-hold and gated approaches, and increase treatment efficiency and safety.


Asunto(s)
Algoritmos , Imagenología Tridimensional/métodos , Hígado/diagnóstico por imagen , Hígado/efectos de la radiación , Radioterapia Guiada por Imagen/métodos , Adulto , Voluntarios Sanos , Humanos , Ultrasonografía , Adulto Joven
6.
EJNMMI Res ; 8(1): 73, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30069753

RESUMEN

BACKGROUND: To determine the relative abilities of compartment models to describe time-courses of 18F-fluoromisonidazole (FMISO) tumor uptake in patients with advanced stage non-small cell lung cancer (NSCLC) imaged using dynamic positron emission tomography (dPET), and study correlations between values of the blood flow-related parameter K1 obtained from fits of the models and an independent blood flow measure obtained from perfusion CT (pCT). NSCLC patients had a 45-min dynamic FMISO PET/CT scan followed by two static PET/CT acquisitions at 2 and 4-h post-injection. Perfusion CT scanning was then performed consisting of a 45-s cine CT. Reversible and irreversible two-, three- and four-tissue compartment models were fitted to 30 time-activity-curves (TACs) obtained for 15 whole tumor structures in 9 patients, each imaged twice. Descriptions of the TACs provided by the models were compared using the Akaike and Bayesian information criteria (AIC and BIC) and leave-one-out cross-validation. The precision with which fitted model parameters estimated ground-truth uptake kinetics was determined using statistical simulation techniques. Blood flow from pCT was correlated with K1 from PET kinetic models in addition to FMISO uptake levels. RESULTS: An irreversible three-tissue compartment model provided the best description of whole tumor FMISO uptake time-courses according to AIC, BIC, and cross-validation scores totaled across the TACs. The simulation study indicated that this model also provided more precise estimates of FMISO uptake kinetics than other two- and three-tissue models. The K1 values obtained from fits of the irreversible three-tissue model correlated strongly with independent blood flow measurements obtained from pCT (Pearson r coefficient = 0.81). The correlation from the irreversible three-tissue model (r = 0.81) was stronger than that from than K1 values obtained from fits of a two-tissue compartment model (r = 0.68), or FMISO uptake levels in static images taken at time-points from tracer injection through to 4 h later (maximum at 2 min, r = 0.70). CONCLUSIONS: Time-courses of whole tumor FMISO uptake by advanced stage NSCLC are described best by an irreversible three-tissue compartment model. The K1 values obtained from fits of the irreversible three-tissue model correlated strongly with independent blood flow measurements obtained from perfusion CT (r = 0.81).

7.
Clin Cancer Res ; 24(19): 4694-4704, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29959141

RESUMEN

Purpose: Tumor vessels influence the growth and response of tumors to therapy. Imaging vascular changes in vivo using dynamic contrast-enhanced MRI (DCE-MRI) has shown potential to guide clinical decision making for treatment. However, quantitative MR imaging biomarkers of vascular function have not been widely adopted, partly because their relationship to structural changes in vessels remains unclear. We aimed to elucidate the relationships between vessel function and morphology in vivo Experimental Design: Untreated preclinical tumors with different levels of vascularization were imaged sequentially using DCE-MRI and CT. Relationships between functional parameters from MR (iAUC, K trans, and BATfrac) and structural parameters from CT (vessel volume, radius, and tortuosity) were assessed using linear models. Tumors treated with anti-VEGFR2 antibody were then imaged to determine whether antiangiogenic therapy altered these relationships. Finally, functional-structural relationships were measured in 10 patients with liver metastases from colorectal cancer.Results: Functional parameters iAUC and K trans primarily reflected vessel volume in untreated preclinical tumors. The relationships varied spatially and with tumor vascularity, and were altered by antiangiogenic treatment. In human liver metastases, all three structural parameters were linearly correlated with iAUC and K trans For iAUC, structural parameters also modified each other's effect.Conclusions: Our findings suggest that MR imaging biomarkers of vascular function are linked to structural changes in tumor vessels and that antiangiogenic therapy can affect this link. Our work also demonstrates the feasibility of three-dimensional functional-structural validation of MR biomarkers in vivo to improve their biological interpretation and clinical utility. Clin Cancer Res; 24(19); 4694-704. ©2018 AACR.


Asunto(s)
Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Hepáticas/diagnóstico por imagen , Imagen por Resonancia Magnética , Neovascularización Patológica/diagnóstico por imagen , Anciano , Inhibidores de la Angiogénesis/administración & dosificación , Animales , Anticuerpos Antiidiotipos/administración & dosificación , Anticuerpos Antiidiotipos/inmunología , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Medios de Contraste/administración & dosificación , Medios de Contraste/química , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Masculino , Ratones , Persona de Mediana Edad , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/inmunología
8.
Med Image Anal ; 33: 145-148, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27364430

RESUMEN

Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Movimiento (Física) , Neoplasias/diagnóstico por imagen , Algoritmos , Estudios Transversales , Humanos , Neoplasias/patología
9.
Med Image Anal ; 32: 69-83, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27054278

RESUMEN

Rectal tumour segmentation in dynamic contrast-enhanced MRI (DCE-MRI) is a challenging task, and an automated and consistent method would be highly desirable to improve the modelling and prediction of patient outcomes from tissue contrast enhancement characteristics - particularly in routine clinical practice. A framework is developed to automate DCE-MRI tumour segmentation, by introducing: perfusion-supervoxels to over-segment and classify DCE-MRI volumes using the dynamic contrast enhancement characteristics; and the pieces-of-parts graphical model, which adds global (anatomic) constraints that further refine the supervoxel components that comprise the tumour. The framework was evaluated on 23 DCE-MRI scans of patients with rectal adenocarcinomas, and achieved a voxelwise area-under the receiver operating characteristic curve (AUC) of 0.97 compared to expert delineations. Creating a binary tumour segmentation, 21 of the 23 cases were segmented correctly with a median Dice similarity coefficient (DSC) of 0.63, which is close to the inter-rater variability of this challenging task. A second study is also included to demonstrate the method's generalisability and achieved a DSC of 0.71. The framework achieves promising results for the underexplored area of rectal tumour segmentation in DCE-MRI, and the methods have potential to be applied to other DCE-MRI and supervoxel segmentation problems.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Neoplasias del Recto/diagnóstico por imagen , Algoritmos , Medios de Contraste , Femenino , Humanos , Masculino
10.
Med Image Comput Comput Assist Interv ; 17(Pt 1): 609-16, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25333169

RESUMEN

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a powerful protocol for assessing tumour progression from changes in tissue contrast enhancement. Manual colorectal tumour delineation is a challenging and time consuming task due to the complex enhancement patterns in the 4D sequence. There is a need for a consistent approach to colorectal tumour segmentation in DCE-MRI and we propose a novel method based on detection of the tumour from signal enhancement characteristics of homogeneous tumour subregions and their neighbourhoods. Our method successfully detected 20 of 23 cases with a mean Dice score of 0.68 +/- 0.15 compared to expert annotations, which is not significantly different from expert inter-rater variability of 0.73 +/- 0.13 and 0.77 +/- 0.10. In comparison, a standard DCE-MRI tumour segmentation technique, fuzzy c-means, obtained a Dice score of 0.28 +/- 0.17.


Asunto(s)
Algoritmos , Inteligencia Artificial , Neoplasias Colorrectales/patología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Humanos , Aumento de la Imagen/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
11.
Med Image Comput Comput Assist Interv ; 16(Pt 1): 187-94, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24505665

RESUMEN

Image-guided interventions often rely on deformable multimodal registration to align pre-treatment and intra-operative scans. There are a number of requirements for automated image registration for this task, such as a robust similarity metric for scans of different modalities with different noise distributions and contrast, an efficient optimisation of the cost function to enable fast registration for this time-sensitive application, and an insensitive choice of registration parameters to avoid delays in practical clinical use. In this work, we build upon the concept of structural image representation for multi-modal similarity. Discriminative descriptors are densely extracted for the multi-modal scans based on the "self-similarity context". An efficient quantised representation is derived that enables very fast computation of point-wise distances between descriptors. A symmetric multi-scale discrete optimisation with diffusion reguIarisation is used to find smooth transformations. The method is evaluated for the registration of 3D ultrasound and MRI brain scans for neurosurgery and demonstrates a significantly reduced registration error (on average 2.1 mm) compared to commonly used similarity metrics and computation times of less than 30 seconds per 3D registration.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Imagen Multimodal/métodos , Procedimientos Neuroquirúrgicos/métodos , Técnica de Sustracción , Cirugía Asistida por Computador/métodos , Algoritmos , Sistemas de Computación , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos
12.
Artículo en Inglés | MEDLINE | ID: mdl-24505740

RESUMEN

Estimation of physiologically plausible deformations is critical for several medical applications. For example, lung cancer diagnosis and treatment requires accurate image registration which preserves sliding motion in the pleural cavity, and the rigidity of chest bones. This paper addresses these challenges by introducing a novel approach for regularisation of non-linear transformations derived from a bilateral filter. For this purpose, the classic Gaussian kernel is replaced by a new kernel that smoothes the estimated deformation field with respect to the spatial position, intensity and deformation dissimilarity. The proposed regularisation is a spatially adaptive filter that is able to preserve discontinuity between the lungs and the pleura and reduces any rigid structures deformations in volumes. Moreover, the presented framework is fully automatic and no prior knowledge of the underlying anatomy is required. The performance of our novel regularisation technique is demonstrated on phantom data for a proof of concept as well as 3D inhale and exhale pairs of clinical CT lung volumes. The results of the quantitative evaluation exhibit a significant improvement when compared to the corresponding state-of-the-art method using classic Gaussian smoothing.


Asunto(s)
Algoritmos , Imagenología Tridimensional/métodos , Pulmón/diagnóstico por imagen , Pulmón/fisiología , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Mecánica Respiratoria/fisiología , Tomografía Computarizada por Rayos X/métodos , Módulo de Elasticidad , Humanos , Movimiento/fisiología , Intensificación de Imagen Radiográfica/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
13.
Inf Process Med Imaging ; 23: 463-74, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24683991

RESUMEN

Deformable medical image registration requires the optimisation of a function with a large number of degrees of freedom. Commonly-used approaches to reduce the computational complexity, such as uniform B-splines and Gaussian image pyramids, introduce translation-invariant homogeneous smoothing, and may lead to less accurate registration in particular for motion fields with discontinuities. This paper introduces the concept of sparse image representation based on supervoxels, which are edge-preserving and therefore enable accurate modelling of sliding organ motions frequently seen in respiratory and cardiac scans. Previous shortcomings of using supervoxels in motion estimation, in particular inconsistent clustering in ambiguous regions, are overcome by employing multiple layers of supervoxels. Furthermore, we propose a new similarity criterion based on a binary shape representation of supervoxels, which improves the accuracy of single-modal registration and enables multimodal registration. We validate our findings based on the registration of two challenging clinical applications of volumetric deformable registration: motion estimation between inhale and exhale phase of CT scans for radiotherapy planning, and deformable multi-modal registration of diagnostic MRI and CT chest scans. The experiments demonstrate state-of-the-art registration accuracy, and require no additional anatomical knowledge with greatly reduced computational complexity.


Asunto(s)
Imagenología Tridimensional/métodos , Pulmón/anatomía & histología , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Técnica de Sustracción , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Radiografía Torácica/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA