Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Biol Macromol ; 272(Pt 1): 132509, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843608

RESUMEN

Functional packaging represents a new frontier for research on food packaging materials. In this context, adding antioxidant properties to packaging films is of interest. In this study, poly(butylene adipate-co-terephthalate) (PBAT) and olive leaf extract (OLE) have been melt-compounded to obtain novel biomaterials suitable for applications which would benefit from the antioxidant activity. The effect of cellulose nanocrystals (CNC) on the PBAT/OLE system was investigated, considering the interface interactions between PBAT/OLE and OLE/CNC. The biomaterials' physical and antioxidant properties were characterized. Morphological analysis corroborates the full miscibility between OLE and PBAT and that OLE favours CNC dispersion into the polymer matrix. Tensile tests show a stable plasticizer effect of OLE for a month in line with good interface PBAT/OLE interactions. Simulant food tests indicate a delay of OLE release from the 20 wt% OLE-based materials. Antioxidant activity tests prove the antioxidant effect of OLE depending on the released polyphenols, prolonged in the system at 20 wt% of OLE. Fluorescence spectroscopy demonstrates the nature of the non-covalent PBAT/OLE interphase interactions in π-π stacking bonds. The presence of CNC in the biomaterials leads to strong hydrogen bonding interactions between CNC and OLE, accelerating OLE released from the PBAT matrix.


Asunto(s)
Antioxidantes , Materiales Biocompatibles , Celulosa , Nanopartículas , Olea , Extractos Vegetales , Hojas de la Planta , Poliésteres , Celulosa/química , Antioxidantes/química , Antioxidantes/farmacología , Olea/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Nanopartículas/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Poliésteres/química , Embalaje de Alimentos/métodos
2.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37373200

RESUMEN

Chromium and aluminum complexes bearing salalen ligands were explored as catalysts for the ring-opening copolymerization (ROCOP) of succinic (SA), maleic (MA), and phthalic (PA) anhydrides with several epoxides: cyclohexene oxide (CHO), propylene oxide (PO), and limonene oxide (LO). Their behavior was compared with that of traditional salen chromium complexes. A completely alternating enchainment of monomers to provide pure polyesters was achieved with all the catalysts when used in combination with 4-(dimethylamino)pyridine (DMAP) as the cocatalyst. Poly(propylene maleate-block-polyglycolide), a diblock polyester with a precise composition, was obtained by switch catalysis, in which the same catalyst was able to combine the ROCOP of propylene oxide and maleic anhydride with the ring-opening polymerization (ROP) of glycolide (GA) through a one-pot procedure, starting from an initial mixture of the three different monomers.


Asunto(s)
Anhídridos , Poliésteres , Aluminio , Polimerizacion , Cromo , Compuestos Epoxi , Catálisis
3.
Polymers (Basel) ; 15(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36904421

RESUMEN

Quercetin is a hydrophobic molecule with short blood circulation times and instability. The development of a nano-delivery system formulation of quercetin may increase its bioavailability, resulting in greater tumor suppressing effects. Triblock ABA type polycaprolactone-polyethylenglycol- polycaprolactone (PCL-PEG-PCL) copolymers have been synthetized using ring-opening polymerization of caprolactone from PEG diol. The copolymers were characterized by nuclear magnetic resonance (NMR), diffusion-ordered NMR spectroscopy (DOSY), and gel permeation chromatography (GPC). The triblock copolymers self-assembled in water forming micelles consisting of a core of biodegradable polycaprolactone (PCL) and a corona of polyethylenglycol (PEG). The core-shell PCL-PEG-PCL nanoparticles were able to incorporate quercetin into the core. They were characterized by dynamic light scattering (DLS) and NMR. The cellular uptake efficiency of human colorectal carcinoma cells was quantitatively determined by flow cytometry using nanoparticles loaded with Nile Red as hydrophobic model drug. The cytotoxic effect of quercetin-loaded nanoparticles was evaluated on HCT 116 cells, showing promising results.

4.
Dalton Trans ; 49(46): 16533-16550, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33140763

RESUMEN

The aim of the present review is to highlight the most recent achievements in different fields of application of salen-based zinc and aluminum complexes. More specifically this article focuses on the use of aluminum and zinc salen-type complexes as optical probes for biologically relevant molecules, as catalysts for the ring opening polymerization (ROP) of cyclic esters and co-polymerization of epoxides and anhydrides (ROCOP) and in the chemical fixation of carbon dioxide (CO2). The intention is to provide an overview of the most recent results from our group within the framework of the state-of-art-results in the literature.

5.
Biomacromolecules ; 17(4): 1383-94, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-26915640

RESUMEN

Biodegradable aliphatic polyesters such as poly(lactide) and poly(ε-caprolactone), largely used in tissue engineering applications, lack suitable functional groups and biological cues to enable interactions with cells. Because of the ubiquity of thiol groups in the biological environment and the pliability of thiol chemistry, we aimed to design and synthesize poly(ester) chains bearing pendant thiol-protected groups. To achieve this, 3-methyl-6-(tritylthiomethyl)-1,4-dioxane-2,5-dione, a lactide-type monomer possessing a pendant thiol-protected group, was synthesized. This molecule, when used as a monomer in controlled ring-opening polymerization in combination with lactide and ε-caprolactone, appeared to be a convenient "building block" for the preparation of functionalized aliphatic copolyesters, which were easily modified further. A polymeric sample bearing pyridyl disulfide groups, able to bind a cysteine-containing peptide, was efficiently obtained from a two-step modification reaction. Porous scaffolds were then prepared by blending this latter copolymer sample with poly(L-lactide-co-ε-caprolactone) followed by salt leaching. A further disulfide exchange reaction performed in aqueous medium formed porous scaffolds with covalently linked arginine-glycine-aspartic acid sequences. The scaffolds were characterized by thermal and mechanical tests, and scanning electron microscopy surface images revealed a highly porous morphology. Moreover, a cytotoxicity test indicated good cell viability.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Dioxanos/química , Lactonas/química , Ingeniería de Tejidos/métodos , Caproatos/química , Dioxanos/síntesis química , Sistemas de Liberación de Medicamentos , Lactonas/síntesis química , Poliésteres/química , Polímeros , Andamios del Tejido
6.
Dalton Trans ; 44(5): 2157-65, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25511585

RESUMEN

Aluminum complexes of non-chiral-salalen ligands were investigated in the catalysis of ring-opening polymerization (ROP) of lactide and ε-caprolactone and in their copolymerization. The aluminum-salalen complexes were found to polymerize all varieties of lactide, namely: l-, d-, rac- and meso-lactide, and showed moderate productivities. rac-LA gave rise to isotactic polylactides (with Pm up to 72%), while meso-LA gave rise to heterotactic polylactides (with a Pm of 79%). An experiment was designed for distinguishing between chain-end control and enantiomorphic-site control combined with polymeryl exchange for the isotactic stereoblock microstructure observed for the PLA produced from rac-LA; it gave strong evidence for polymeryl exchange between propagating species. Finally, this class of catalysts promoted the copolymerization of ε-caprolactone and lactides. In particular, compound allowed controlled random copolymerization of ε-caprolactone and l-lactide.

7.
Biomacromolecules ; 15(1): 403-15, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24328043

RESUMEN

One constrain in the use of micellar carriers as drug delivery systems (DDSs) is their low stability in aqueous solution. In this study "tree-shaped" copolymers of general formula mPEG-(PLA)n (n = 1, 2 or 4; mPEG = poly(ethylene glycol) monomethylether 2K or 5K Da; PLA = atactic or isotactic poly(lactide)) were synthesized to evaluate the architecture and chemical composition effect on the micelles formation and stability. Copolymers with mPEG/PLA ratio of about 1:1 wt/wt were obtained using a "core-first" synthetic route. Dynamic Light Scattering (DLS), Field Emission Scanning Electron Microscopy (FESEM), and Zeta Potential measurements showed that mPEG2K-(PD,LLA)2 copolymer, characterized by mPEG chain of 2000 Da and two blocks of atactic PLA, was able to form monodisperse and stable micelles. To analyze the interaction among micelles and tumor cells, FITC conjugated mPEG-(PLA)n were synthesized. The derived micelles were tested on two, histological different, tumor cell lines: HEK293t and HeLa cells. Fluorescence Activated Cells Sorter (FACS) analysis showed that the FITC conjugated mPEG2K-(PD,LLA)2 copolymer stain tumor cells with high efficiency. Our data demonstrate that both PEG size and PLA structure control the biological interaction between the micelles and biological systems. Moreover, using confocal microscopy analysis, the staining of tumor cells obtained after incubation with mPEG2K-(PD,LLA)2 was shown to be localized inside the tumor cells. Indeed, the mPEG2K-(PD,LLA)2 paclitaxel-loaded micelles mediate a potent antitumor cytotoxicity effect.


Asunto(s)
Membrana Celular , Sustancias Macromoleculares/química , Micelas , Polietilenglicoles/química , Tensoactivos/química , Membrana Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Sustancias Macromoleculares/metabolismo , Polietilenglicoles/metabolismo , Tensoactivos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA