Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Pharmaceutics ; 16(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38794284

RESUMEN

The clinical application of 2-methoxyestradiol (2ME) in cancer therapy has been limited by its low solubility and rapid metabolism. Derivatives of 2ME have been synthesised to enhance bioavailability and decrease hepatic metabolism. Compound 4a, an analog of 2ME, has demonstrated exceptional pharmacological activity, in addition to promising pharmacokinetic profile. Our study, therefore, aimed at exploring the anticancer effects of 4a on the cervical cancer cell line, HeLa. Compound 4a exhibited a significant and dose-dependent antimetastatic and antiinvasive impact on HeLa cells, as determined by wound-healing and Boyden chamber assays, respectively. Hoechst/Propidium iodide (HOPI) double staining showcased a substantial induction of apoptosis via 4a, with minimal necrotic effect. Flow cytometry revealed a significant G2/M phase arrest, accompanied by a noteworthy rise in the sub-G1 cell population, indicating apoptosis, 18 h post-treatment. Moreover, a cell-independent tubulin polymerisation assay illustrated compound 4a's ability to stabilise microtubules by promoting tubulin polymerisation. Molecular modelling experiments depicted that 4a interacts with the colchicine-binding site, nestled between the α and ß tubulin dimers. Furthermore, 4a displayed an affinity for binding to and activating ER-α, as demonstrated by the luciferase reporter assay. These findings underscore the potential of 4a in inhibiting HPV18+ cervical cancer proliferation and cellular motility.

2.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673860

RESUMEN

Directed structural modifications of natural products offer excellent opportunities to develop selectively acting drug candidates. Natural product hybrids represent a particular compound group. The components of hybrids constructed from different molecular entities may result in synergic action with diminished side effects. Steroidal homo- or heterodimers deserve special attention owing to their potentially high anticancer effect. Inspired by our recently described antiproliferative core-modified estrone derivatives, here, we combined them into heterodimers via Cu(I)-catalyzed azide-alkyne cycloaddition reactions. The two trans-16-azido-3-(O-benzyl)-17-hydroxy-13α-estrone derivatives were reacted with 3-O-propargyl-D-secoestrone alcohol or oxime. The antiproliferative activities of the four newly synthesized dimers were evaluated against a panel of human adherent gynecological cancer cell lines (cervical: Hela, SiHa, C33A; breast: MCF-7, T47D, MDA-MB-231, MDA-MB-361; ovarian: A2780). One heterodimer (12) exerted substantial antiproliferative activity against all investigated cell lines in the submicromolar or low micromolar range. A pronounced proapoptotic effect was observed by fluorescent double staining and flow cytometry on three cervical cell lines. Additionally, cell cycle blockade in the G2/M phase was detected, which might be a consequence of the effect of the dimer on tubulin polymerization. Computational calculations on the taxoid binding site of tubulin revealed potential binding of both steroidal building blocks, mainly with hydrophobic interactions and water bridges.


Asunto(s)
Antineoplásicos , Proliferación Celular , Estrona , Humanos , Estrona/farmacología , Estrona/análogos & derivados , Estrona/química , Estrona/síntesis química , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Dimerización , Simulación del Acoplamiento Molecular , Femenino , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Células MCF-7
3.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37047597

RESUMEN

Cervical carcinoma is one of the most frequent malignant gynecological cancers in women of reproductive age. Because of the poor tolerability of currently available chemotherapeutic agents, efforts have been focused on developing innovative molecules, including steroids, that exert antineoplastic effects with a better safety profile. In addition to their endocrine properties, certain estrogens exhibit additional biological activities, such as antiangiogenic and anticancer effects. Based on previous studies, the antineoplastic properties of 13α-estrone sulfamate derivatives (13AES1-3) were investigated, and the mechanism of action for the most promising compound 13AES3 was explored. Based on their effects on the viability of different human adherent gynecological cancer cells, the SiHa cervical cell line was used for mechanistic experiments. The most active analog 13AES3 was shown to exert considerable proapoptotic effects, as evidenced by a colorimetric caspase-3 assay and fluorescent double staining. It also elicited antimigratory and anti-invasive effects in a concentration-dependent manner, as evidenced by wound healing and Boyden chamber assays, respectively. Regarding their mechanism of action, 13AES derivatives were shown to inhibit tubulin polymerization, and computer simulations provided a possible explanation for the importance of the presence of the chlorophenyl ring on the estrane skeleton. 13AES3 is considered to be the first 13α-estrone derivative with a significant antineoplastic potency against SiHa cancer cells. Therefore, it might serve as a valuable lead molecule for the design of anticancer agents targeting cervical carcinomas.


Asunto(s)
Antineoplásicos , Neoplasias del Cuello Uterino , Humanos , Femenino , Estrona , Papillomavirus Humano 16 , Proliferación Celular , Apoptosis , Línea Celular , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Línea Celular Tumoral
4.
Molecules ; 28(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36770863

RESUMEN

Novel 13α-estrone derivatives have been synthesized via direct arylation of the phenolic hydroxy function. Chan-Lam couplings of arylboronic acids with 13α-estrone as a nucleophilic partner were carried out under copper catalysis. The antiproliferative activities of the newly synthesized diaryl ethers against a panel of human cancer cell lines (A2780, MCF-7, MDA-MB 231, HeLa, SiHa) were investigated by means of MTT assays. The quinoline derivative displayed substantial antiproliferative activity against MCF-7 and HeLa cell lines with low micromolar IC50 values. Disturbance of tubulin polymerization has been confirmed by microplate-based photometric assay. Computational calculations reveal significant interactions of the quinoline derivative with the taxoid binding site of tubulin.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , Células HeLa , Línea Celular Tumoral , Antineoplásicos/química , Estrona/química , Tubulina (Proteína)/metabolismo , Éteres/farmacología , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Estructura Molecular
5.
J Enzyme Inhib Med Chem ; 36(1): 1931-1937, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34445919

RESUMEN

Microwave-assisted phospha-Michael addition reactions were carried out in the 13α-oestrone series. The exocyclic 16-methylene-17-ketones as α,ß-unsaturated ketones were reacted with secondary phosphine oxides as nucleophilic partners. The addition reactions furnished the two tertiary phosphine oxide diastereomers in high yields. The main product was the 16α-isomer. The antiproliferative activities of the newly synthesised organophosphorus compounds against a panel of nine human cancer cell lines were investigated by means of MTT assays. The most potent compound, the diphenylphosphine oxide derivative in the 3-O-methyl-13α-oestrone series (9), exerted selective cell growth-inhibitory activity against UPCI-SCC-131 and T47D cell lines with low micromolar IC50 values. Moreover, it displayed good tumour selectivity property determined against non-cancerous mouse fibroblast cells.


Asunto(s)
Antineoplásicos/química , Estrona/síntesis química , Estrona/farmacología , Compuestos Organofosforados/química , Fosfinas/química , Animales , Antineoplásicos/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Fibroblastos/citología , Humanos , Ratones , Microondas , Modelos Moleculares , Relación Estructura-Actividad
6.
Biochim Biophys Acta Bioenerg ; 1862(2): 148337, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33202220

RESUMEN

Sulfide oxidation is catalyzed by ancient membrane-bound sulfide:quinone oxidoreductases (SQR) which are classified into six different types. For catalysis of sulfide oxidation, all SQRs require FAD cofactor and a redox-active centre in the active site, usually formed between conserved essential cysteines. SQRs of different types have variation in the number and position of cysteines, highlighting the potential for diverse catalytic mechanisms. The photosynthetic purple sulfur bacterium, Thiocapsa roseopersicina contains a type VI SQR enzyme (TrSqrF) having unusual catalytic parameters and four cysteines likely involved in the catalysis. Site-directed mutagenesis was applied to identify the role of cysteines in the catalytic process of TrSqrF. Based on biochemical and kinetic characterization of these TrSqrF variants, Cys121 is identified as crucial for enzyme activity. The cofactor is covalently bound via a heterodisulfide bridge between Cys121 and the C8M group of FAD. Mutation of another cysteine present in all SQRs (Cys332) causes remarkably decreased enzyme activity (14.6% of wild type enzyme) proving important, but non-essential role of this residue in enzyme catalysis. The sulfhydril-blocking agent, iodoacetamide can irreversibly inactivate TrSqrF but only if substrates are present and the enzyme is actively catalyzing its reaction. When the enzyme is inhibited by iodoacetamide, the FAD cofactor is released. The inhibition studies support a mechanism that entails opening and reforming of the heterodisulfide bridge during the catalytic cycle of TrSqrF. Our study thus reports the first detailed structure-function analysis of a type VI SQR enzyme which enables the proposal of a distinct mechanism of sulfide oxidation for this class.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Quinona Reductasas/química , Thiocapsa roseopersicina/enzimología , Catálisis , Proteínas de Escherichia coli/genética , Quinona Reductasas/genética , Quinona Reductasas/metabolismo , Thiocapsa roseopersicina/genética
7.
J Enzyme Inhib Med Chem ; 36(1): 58-67, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33121276

RESUMEN

2- or 4-Substituted 3-N-benzyltriazolylmethyl-13α-oestrone derivatives were synthesised via bromination of ring A and subsequent microwave-assisted, Pd-catalysed C(sp2)-P couplings. The antiproliferative activities of the newly synthesised brominated and phosphonated compounds against a panel of human cancer cell lines (A2780, MCF-7, MDA-MB 231) were investigated by means of MTT assays. The most potent compound, the 3-N-benzyltriazolylmethyl-4-bromo-13α-oestrone derivative exerted substantial selective cell growth-inhibitory activity against A2780 cell line with a submicromolar IC50 value. Computational calculations reveal strong interactions of the 4-bromo derivative with both colchicine and taxoid binding sites of tubulin. Disturbance of tubulin function has been confirmed by photometric polymerisation assay.


Asunto(s)
Antineoplásicos/farmacología , Estrona/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Estrona/análogos & derivados , Estrona/química , Humanos , Ratones , Modelos Moleculares , Estructura Molecular , Células 3T3 NIH , Polimerizacion/efectos de los fármacos , Relación Estructura-Actividad , Tubulina (Proteína)/metabolismo
8.
Int J Mol Sci ; 21(14)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679695

RESUMEN

DNA damage plays a decisive role in epigenetic effects. The detection and analysis of DNA damages, like the most common change of guanine (G) to 8-oxo-7,8-dihydroguanine (OG), is a key factor in cancer research. It is especially true for G quadruplex structure (GQ), which is one of the best-known examples of a non-canonical DNA arrangement. In the present work, we provided an overview on analytical methods in connection with the detection of OG in oligonucleotides with GQ-forming capacity. Focusing on the last five years, novel electrochemical tools, like dedicated electrodes, were overviewed, as well as different optical methods (fluorometric assays, resonance light scattering or UV radiation) along with hyphenated detection and structural analysis methods (CD, NMR, melting temperature analysis and nanopore detection) were also applied for OG detection. Additionally, GQ-related computational simulations were also summarized. All these results emphasize that OG detection and the analysis of the effect of its presence in higher ordered structures like GQ is still a state-of-the-art research line with continuously increasing interest.


Asunto(s)
Daño del ADN , Guanina/metabolismo , Oligonucleótidos/metabolismo , Estrés Oxidativo , Animales , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Dicroismo Circular/instrumentación , Dicroismo Circular/métodos , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Fluorometría/instrumentación , Fluorometría/métodos , G-Cuádruplex , Guanina/análisis , Humanos , Luz , Mediciones Luminiscentes/instrumentación , Mediciones Luminiscentes/métodos , Espectroscopía de Resonancia Magnética/instrumentación , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Oligonucleótidos/química , Dispersión de Radiación
9.
Cell Mol Life Sci ; 77(4): 765-778, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31327045

RESUMEN

Cystic fibrosis (CF), a lethal monogenic disease, is caused by pathogenic variants of the CFTR chloride channel. The majority of CF mutations affect protein folding and stability leading overall to diminished apical anion conductance of epithelial cells. The recently published cryo-EM structures of full-length human and zebrafish CFTR provide a good model to gain insight into structure-function relationships of CFTR variants. Although, some of the structures were determined in the phosphorylated and ATP-bound active state, none of the static structures showed an open pathway for chloride permeation. Therefore, we performed molecular dynamics simulations to generate a conformational ensemble of the protein and used channel detecting algorithms to identify conformations with an opened channel. Our simulations indicate a main intracellular entry at TM4/6, a secondary pore at TM10/12, and a bottleneck region involving numerous amino acids from TM1, TM6, and TM12 in accordance with experiments. Since chloride ions entered the pathway in our equilibrium simulations, but did not traverse the bottleneck region, we performed metadynamics simulations, which revealed two possible exits. One of the chloride ions exits includes hydrophobic lipid tails that may explain the lipid-dependency of CFTR function. In summary, our in silico study provides a detailed description of a potential chloride channel pathway based on a recent cryo-EM structure and may help to understand the gating of the CFTR chloride channel, thus contributing to novel strategies to rescue dysfunctional mutants.


Asunto(s)
Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Activación del Canal Iónico , Simulación de Dinámica Molecular , Conformación Proteica , Proteínas de Pez Cebra/química
10.
Int J Mol Sci ; 20(18)2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31489952

RESUMEN

Optimization of the enthalpy component of binding thermodynamics of drug candidates is a successful pathway of rational molecular design. However, the large size and missing hydration structure of target-ligand complexes often hinder such optimizations with quantum mechanical (QM) methods. At the same time, QM calculations are often necessitated for proper handling of electronic effects. To overcome the above problems, and help the QM design of new drugs, a protocol is introduced for atomic level determination of hydration structure and extraction of structures of target-ligand complex interfaces. The protocol is a combination of a previously published program MobyWat, an engine for assigning explicit water positions, and Fragmenter, a new tool for optimal fragmentation of protein targets. The protocol fostered a series of fast calculations of ligand binding enthalpies at the semi-empirical QM level. Ligands of diverse chemistry ranging from small aromatic compounds up to a large peptide helix of a molecular weight of 3000 targeting a leukemia protein were selected for systematic investigations. Comparison of various combinations of implicit and explicit water models demonstrated that the presence of accurately predicted explicit water molecules in the complex interface considerably improved the agreement with experimental results. A single scaling factor was derived for conversion of QM reaction heats into binding enthalpy values. The factor links molecular structure with binding thermodynamics via QM calculations. The new protocol and scaling factor will help automated optimization of binding enthalpy in future molecular design projects.


Asunto(s)
Ligandos , Modelos Teóricos , Teoría Cuántica , Fenómenos Biofísicos , Modelos Moleculares , Estructura Molecular , Solventes/química , Agua/química
11.
Bioorg Chem ; 81: 211-221, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30144634

RESUMEN

A series of novel mimetic peptides were designed, synthesised and biologically evaluated as inhibitors of Aß42 aggregation. One of the synthesised peptidic compounds, termed compound 7 modulated Aß42 aggregation as demonstrated by thioflavin T fluorescence, acting also as an inhibitor of the cytotoxicity exerted by Aß42 aggregates. The early stage interaction between compound 7 and the Aß42 monomer was investigated by replica exchange molecular dynamics (REMD) simulations and docking studies. Our theoretical results revealed that compound 7 can elongate the helical conformation state of an early stage Aß42 monomer and it helps preventing the formation of ß-sheet structures by interacting with key residues in the central hydrophobic cluster (CHC). This strategy where early "on-pathway" events are monitored by small molecules will help the development of new therapeutic strategies for Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Oligopéptidos/farmacología , Fragmentos de Péptidos/antagonistas & inhibidores , Peptidomiméticos/farmacología , Conformación Proteica en Hélice alfa/efectos de los fármacos , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Línea Celular Tumoral , Humanos , Simulación del Acoplamiento Molecular , Oligopéptidos/síntesis química , Oligopéptidos/metabolismo , Oligopéptidos/toxicidad , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Peptidomiméticos/síntesis química , Peptidomiméticos/metabolismo , Peptidomiméticos/toxicidad , Unión Proteica
12.
J Mol Model ; 13(11): 1141-50, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17805586

RESUMEN

Poly-(Ala) and poly-(Gln) peptides have important biological effects, and can cause various human illnesses and neurodegenerative diseases. Conformational analysis of these homo-oligopeptides (HOPs) was carried out by simulated annealing in order to identify their structural properties regarding secondary structures and intramolecular H-bonding patterns. Poly-(Ala) and poly-(Gln) peptides composed of 7, 10, 14 or 20 amino acids were modelled in both charged and terminally blocked forms. In the case of conformers derived from simulated annealing calculations, the presence of various secondary structural elements (different types of beta-turns, alpha-helix, 3(10)-helix, poly-proline II helix, parallel and antiparallel beta-strands) was investigated. Moreover, the intramolecular H-bonding patterns formed either between the backbone atoms for both HOPs or between the backbone and side-chain atoms for the poly-(Gln) peptides were examined. Our results showed that different secondary structural elements (type I and type III beta-turns, alpha-helix, 3(10)-helix, antiparallel beta-strand) could be observed in both poly-(Ala) and poly-(Gln) peptides and, according to their presence, characteristic H-bonding patterns formed mainly by i<--i+3 and i<--i+4 H-bonds could be found.


Asunto(s)
Péptidos/química , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Enfermedades Neurodegenerativas , Oligopéptidos/química , Conformación Proteica , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA