Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(42): e2403217121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39378089

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a viral G protein-coupled receptor, KSHV-GPCR, that contributes to KSHV immune evasion and pathogenesis of Kaposi's sarcoma. KSHV-GPCR shares a high similarity with CXC chemokine receptors CXCR2 and can be activated by selected chemokine ligands. Like other herpesvirus-encoded GPCRs, KSHV-GPCR is characterized by its constitutive activity by coupling to various G proteins. We investigated the structural basis of ligand-dependent and constitutive activation of KSHV-GPCR, obtaining high-resolution cryo-EM structures of KSHV-GPCR-Gi complexes with and without the bound CXCL1 chemokine. Analysis of the apo-KSHV-GPCR-Gi structure (2.81 Å) unraveled the involvement of extracellular loop 2 in constitutive activation of the receptor. In comparison, the CXCL1-bound KSHV-GPCR-Gi structure (3.01 Å) showed a two-site binding mode and provided detailed information of CXCL1 binding to a chemokine receptor. The dual activation mechanism employed by KSHV-GPCR represents an evolutionary adaptation for immune evasion and contributes to the pathogenesis of Kaposi's sarcoma. Together with results from functional assays that confirmed the structural models, these findings may help to develop therapeutic strategies for KSHV infection.


Asunto(s)
Quimiocina CXCL1 , Herpesvirus Humano 8 , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/genética , Quimiocina CXCL1/metabolismo , Humanos , Proteínas Virales/metabolismo , Proteínas Virales/química , Microscopía por Crioelectrón , Unión Proteica , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Modelos Moleculares , Sarcoma de Kaposi/virología , Sarcoma de Kaposi/metabolismo , Receptores de Quimiocina
2.
Br J Pharmacol ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044481

RESUMEN

BACKGROUND AND PURPOSE: Allosterism is a regulatory mechanism for GPCRs that can be attained by ligand-binding or protein-protein interactions with another GPCR. We have studied the influence of the dimer interface on the allosteric properties of the A2A receptor and CB2 receptor heteromer. EXPERIMENTAL APPROACH: We have evaluated cAMP production, phosphorylation of signal-regulated kinases (pERK1/2), label-free dynamic mass redistribution, ß-arrestin 2 recruitment and bimolecular fluorescence complementation assays in the absence and presence of synthetic peptides that disrupt the formation of the heteromer. Molecular dynamic simulations provided converging evidence that the heteromeric interface influences the allosteric properties of the A2AR-CB2R heteromer. KEY RESULTS: Apo A2AR blocks agonist-induced signalling of CB2R. The disruptive peptides, with the amino acid sequence of transmembrane (TM) 6 of A2AR or CB2R, facilitate CB2R activation, suggesting that A2AR allosterically prevents the outward movement of TM 6 of CB2R for G protein binding. Significantly, binding of the selective antagonist SCH 58261 to A2AR also facilitated agonist-induced activation of CB2R. CONCLUSIONS AND IMPLICATIONS: It is proposed that the A2AR-CB2R heteromer contains distinct dimerization interfaces that govern its functional properties. The molecular interface between protomers of the A2AR-CB2R heteromer interconverted from TM 6 for apo or agonist-bound A2AR, blocking CB2R activation, to mainly the TM 1/7 interface for antagonist-bound A2AR, facilitating the independent opening of intracellular cavities for G protein binding. These novel results shed light on a different type of allosteric mechanism and extend the repertoire of GPCR heteromer signalling.

4.
Biomed Pharmacother ; 160: 114327, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36736280

RESUMEN

The striatal dopamine D2 receptor (D2R) is generally accepted to be involved in positive symptoms of schizophrenia and is a main target for clinically used antipsychotics. D2R are highly expressed in the striatum, where they form heteromers with the adenosine A2A receptor (A2AR). Changes in the density of A2AR-D2R heteromers have been reported in postmortem tissue from patients with schizophrenia, but the degree to which A2R are involved in schizophrenia and the effect of antipsychotic drugs is unknown. Here, we examine the effect of exposure to three prototypical antipsychotic drugs on A2AR-D2R heteromerization in mammalian cells using a NanoBiT assay. After 16 h of exposure, a significant increase in the density of A2AR-D2R heteromers was found with haloperidol and aripiprazole, but not with clozapine. On the other hand, clozapine, but not haloperidol or aripiprazole, was associated with a significant decrease in A2AR-D2R heteromerization after 2 h of treatment. Computational binding models of these compounds revealed distinctive molecular signatures that explain their different influence on heteromerization. The bulky tricyclic moiety of clozapine displaces TM 5 of D2R, inducing a clash with A2AR, while the extended binding mode of haloperidol and aripiprazole stabilizes a specific conformation of the second extracellular loop of D2R that enhances the interaction with A2AR. It is proposed that an increase in A2AR-D2R heteromerization is involved in the extrapyramidal side effects (EPS) of antipsychotics and that the specific clozapine-mediated destabilization of A2AR-D2R heteromerization can explain its low EPS liability.


Asunto(s)
Antipsicóticos , Clozapina , Animales , Humanos , Dopamina , Clozapina/farmacología , Antipsicóticos/farmacología , Receptores de Dopamina D2/metabolismo , Aripiprazol , Adenosina/farmacología , Mamíferos
5.
Biomed Pharmacother ; 156: 113896, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36279718

RESUMEN

Adenosine modulates neurotransmission through inhibitory adenosine A1 receptors (A1Rs) and stimulatory A2A receptors (A2ARs). These G protein-coupled receptors are involved in motor function and related to neurodegenerative diseases such as Parkinson's disease (PD). An autosomal-recessive mutation (G2797.44S) within the transmembrane helix (TM) 7 of A1R (A1RG279S) has been associated with the development of early onset PD (EOPD). Here, we aimed at investigating the impact of this mutation on the structure and function of the A1R and the A1R-A2AR heteromer. Our results revealed that the G2797.44S mutation does not alter A1R expression, ligand binding, constitutive activity or coupling to transducer proteins (Gαi, Gαq, Gα12/13, Gαs, ß-arrestin2 and GRK2) in transfected HEK-293 T cells. However, A1RG279S weakened the ability of A1R to heteromerize with A2AR, as shown in a NanoBiT assay, which led to the disappearance of the heteromerization-dependent negative allosteric modulation that A1R imposes on the constitutive activity and agonist-induced activation of the A2AR. Molecular dynamic simulations allowed to propose an indirect mechanism by which the G2797.44S mutation in TM 7 of A1R weakens the TM 5/6 interface of the A1R-A2AR heteromer. Therefore, it is demonstrated that a PD linked ADORA1 mutation is associated with dysfunction of adenosine receptor heteromerization. We postulate that a hyperglutamatergic state secondary to increased constitutive activity and sensitivity to adenosine of A2AR not forming heteromers with A1R could represent a main pathogenetic mechanism of the EOPD associated with the G2797.44S ADORA1 mutation.


Asunto(s)
Adenosina , Enfermedad de Parkinson , Humanos , Adenosina/farmacología , Células HEK293 , Mutación/genética , Enfermedad de Parkinson/genética , Receptor de Adenosina A1/genética , Receptor de Adenosina A1/metabolismo , Receptores de Adenosina A2
6.
Pharmacol Res ; 182: 106322, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35750299

RESUMEN

Recent studies have proposed that heteromers of µ-opioid receptors (MORs) and galanin Gal1 receptors (Gal1Rs) localized in the mesencephalon mediate the dopaminergic effects of opioids. The present study reports converging evidence, using a peptide-interfering approach combined with biophysical and biochemical techniques, including total internal reflection fluorescence microscopy, for a predominant homodimeric structure of MOR and Gal1R when expressed individually, and for their preference to form functional heterotetramers when co-expressed. Results show that a heteromerization-dependent change in the Gal1R homodimeric interface leads to a switch in G-protein coupling from inhibitory Gi to stimulatory Gs proteins. The MOR-Gal1R heterotetramer, which is thus bound to Gs via the Gal1R homodimer and Gi via the MOR homodimer, provides the framework for a canonical Gs-Gi antagonist interaction at the adenylyl cyclase level. These novel results shed light on the intense debate about the oligomeric quaternary structure of G protein-coupled receptors, their predilection for heteromer formation, and the resulting functional significance.


Asunto(s)
Analgésicos Opioides , Galanina , Analgésicos Opioides/farmacología , Mesencéfalo , Péptidos , Receptores Opioides
8.
J Med Chem ; 65(1): 616-632, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34982555

RESUMEN

A G protein-coupled receptor heteromer that fulfills the established criteria for its existence in vivo is the complex between adenosine A2A (A2AR) and dopamine D2 (D2R) receptors. Here, we have designed and synthesized heterobivalent ligands for the A2AR-D2R heteromer with various spacer lengths. The indispensable simultaneous binding of these ligands to the two different orthosteric sites of the heteromer has been evaluated by radioligand competition-binding assays in the absence and presence of specific peptides that disrupt the formation of the heteromer, label-free dynamic mass redistribution assays in living cells, and molecular dynamic simulations. This combination of techniques has permitted us to identify compound 26 [KDB1 (A2AR) = 2.1 nM, KDB1 (D2R) = 0.13 nM], with a spacer length of 43-atoms, as a true bivalent ligand that simultaneously binds to the two different orthosteric sites. Moreover, bioluminescence resonance energy transfer experiments indicate that 26 favors the stabilization of the A2AR-D2R heteromer.


Asunto(s)
Receptor de Adenosina A2A/efectos de los fármacos , Receptores de Dopamina D2/efectos de los fármacos , Animales , Sitios de Unión , Células CHO , Cricetinae , Cricetulus , Diseño de Fármacos , Humanos , Ligandos , Simulación de Dinámica Molecular , Ensayo de Unión Radioligante
9.
J Med Chem ; 64(10): 6937-6948, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33887904

RESUMEN

The activation of cannabinoid CB1 receptors (CB1R) by Δ9-tetrahydrocannabinol (THC), the main component of Cannabis sativa, induces analgesia. CB1R activation, however, also causes cognitive impairment via the serotonin 5HT2A receptor (5HT2AR), a component of a CB1R-5HT2AR heteromer, posing a serious drawback for cannabinoid therapeutic use. We have shown that peptides reproducing CB1R transmembrane (TM) helices 5 and 6, fused to a cell-penetrating sequence (CPP), can alter the structure of the CB1R-5HT2AR heteromer and avert THC cognitive impairment while preserving analgesia. Here, we report the optimization of these prototypes into drug-like leads by (i) shortening the TM5, TM6, and CPP sequences, without losing the ability to disturb the CB1R-5HT2AR heteromer, and (ii) extensive sequence remodeling to achieve protease resistance and blood-brain barrier penetration. Our efforts have culminated in the identification of an ideal candidate for cannabis-based pain management, an orally active 16-residue peptide preserving THC-induced analgesia.


Asunto(s)
Analgésicos/química , Cannabis/química , Péptidos/química , Administración Oral , Secuencia de Aminoácidos , Analgésicos/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Sitios de Unión , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Cannabinoides/química , Cannabinoides/farmacología , Cannabis/metabolismo , Dimerización , Ratones , Ratones Endogámicos ICR , Simulación de Dinámica Molecular , Dolor/tratamiento farmacológico , Dolor/patología , Péptidos/metabolismo , Péptidos/farmacología , Péptidos/uso terapéutico , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/metabolismo , Receptor de Serotonina 5-HT2A/química , Receptor de Serotonina 5-HT2A/metabolismo
10.
Cell Mol Life Sci ; 78(8): 3957-3968, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33580270

RESUMEN

Adenosine is one of the most ancient signaling molecules and has receptors in both animals and plants. In mammals there are four specific receptors, A1, A2A, A2B, and A3, which belong to the superfamily of G-protein-coupled receptors (GPCRs). Evidence accumulated in the last 20 years indicates that GPCRs are often expressed as oligomeric complexes formed by a number of equal (homomers) or different (heteromers) receptors. This review presents the data showing the occurrence of heteromers formed by A1 and A2A, A2A and A2B, and A2A and A3 receptors highlighting (i) their tetrameric structural arrangements, and (ii) the functional diversity that those heteromers provide to adenosinergic signaling.


Asunto(s)
Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Animales , Humanos , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Receptores Purinérgicos P1/química , Transducción de Señal
11.
Comput Struct Biotechnol J ; 18: 2723-2732, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101610

RESUMEN

Biased agonism, the ability of agonists to differentially activate downstream signaling pathways by stabilizing specific receptor conformations, is a key issue for G protein-coupled receptor (GPCR) signaling. The C-terminal domain might influence this functional selectivity of GPCRs as it engages G proteins, GPCR kinases, ß-arrestins, and several other proteins. Thus, the aim of this paper is to compare the agonist-dependent selectivity for intracellular pathways in a heterologous system expressing the full-length (A2AR) and a C-tail truncated (A2A Δ40R lacking the last 40 amino acids) adenosine A2A receptor, a GPCR that is already targeted in Parkinson's disease using a first-in-class drug. Experimental data such as ligand binding, cAMP production, ß-arrestin recruitment, ERK1/2 phosphorylation and dynamic mass redistribution assays, which correspond to different aspects of signal transduction, were measured upon the action of structurally diverse compounds (the agonists adenosine, NECA, CGS-21680, PSB-0777 and LUF-5834 and the SCH-58261 antagonist) in cells expressing A2AR and A2A Δ40R. The results show that taking cAMP levels and the endogenous adenosine agonist as references, the main difference in bias was obtained with PSB-0777 and LUF-5834. The C-terminus is dispensable for both G-protein and ß-arrestin recruitment and also for MAPK activation. Unrestrained molecular dynamics simulations, at the µs timescale, were used to understand the structural arrangements of the binding cavity, triggered by these chemically different agonists, facilitating G protein binding with different efficacy.

12.
Cell Metab ; 32(1): 56-70.e7, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32589947

RESUMEN

The combination of aging populations with the obesity pandemic results in an alarming rise in non-communicable diseases. Here, we show that the enigmatic adenosine A2B receptor (A2B) is abundantly expressed in skeletal muscle (SKM) as well as brown adipose tissue (BAT) and might be targeted to counteract age-related muscle atrophy (sarcopenia) as well as obesity. Mice with SKM-specific deletion of A2B exhibited sarcopenia, diminished muscle strength, and reduced energy expenditure (EE), whereas pharmacological A2B activation counteracted these processes. Adipose tissue-specific ablation of A2B exacerbated age-related processes and reduced BAT EE, whereas A2B stimulation ameliorated obesity. In humans, A2B expression correlated with EE in SKM, BAT activity, and abundance of thermogenic adipocytes in white fat. Moreover, A2B agonist treatment increased EE from human adipocytes, myocytes, and muscle explants. Mechanistically, A2B forms heterodimers required for adenosine signaling. Overall, adenosine/A2B signaling links muscle and BAT and has both anti-aging and anti-obesity potential.


Asunto(s)
Envejecimiento/metabolismo , Obesidad/metabolismo , Receptor de Adenosina A2B/metabolismo , Adolescente , Adulto , Animales , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Receptor de Adenosina A2B/deficiencia , Transducción de Señal , Adulto Joven
13.
BMC Biol ; 18(1): 9, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31973708

RESUMEN

BACKGROUND: It has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. RESULTS: Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A1 receptors or dopamine D2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. CONCLUSIONS: We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer.


Asunto(s)
Cuerpo Estriado/metabolismo , Ácido Glutámico/metabolismo , Receptores de Cannabinoides/metabolismo , Receptores Purinérgicos P1/metabolismo , Animales , Masculino , Ratas , Ratas Wistar , Transmisión Sináptica , Transfección
14.
ACS Chem Neurosci ; 10(5): 2510-2517, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30821959

RESUMEN

Experiment and modeling were combined to understand inhibition of the alanine-serine-cysteine-1 (asc1) transporter. The structure-activity relationship (SAR) was explored with synthesis of analogues of BMS-466442. Direct target interaction and binding site location between TM helices 6 and 10 were confirmed via site directed mutagenesis. Computational modeling suggested the inhibitor binds via competitive occupation of the orthosteric site while also blocking the movement of TM helices that are required for transport.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos y+/antagonistas & inhibidores , Histidina/análogos & derivados , Indoles/farmacología , Animales , Sitios de Unión , Células Cultivadas , Histidina/farmacología , Humanos , Ratas , Relación Estructura-Actividad
15.
Mol Neurobiol ; 56(2): 1196-1210, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29876881

RESUMEN

Despite ancient knowledge on cocaine appetite-suppressant action, the molecular basis of such fact remains unknown. Addiction/eating disorders (e.g., binge eating, anorexia, bulimia) share a central control involving reward circuits. However, we here show that the sigma-1 receptor (σ1R) mediates cocaine anorectic effects by interacting in neurons with growth/hormone/secretagogue (ghrelin) receptors. Cocaine increases colocalization of σ1R and GHS-R1a at the cell surface. Moreover, in transfected HEK-293T and neuroblastoma SH-SY5Y cells, and in primary neuronal cultures, pretreatment with cocaine or a σ1R agonist inhibited ghrelin-mediated signaling, in a similar manner as the GHS-R1a antagonist YIL-781. Results were similar in G protein-dependent (cAMP accumulation and calcium release) and in partly dependent or independent (ERK1/2 phosphorylation and label-free) assays. We provide solid evidence for direct interaction between receptors and the functional consequences, as well as a reliable structural model of the macromolecular σ1R-GHS-R1a complex, which arises as a key piece in the puzzle of the events linking cocaine consumption and appetitive/consummatory behaviors.


Asunto(s)
Cocaína/farmacología , Cuerpo Estriado/efectos de los fármacos , Inhibidores de Captación de Dopamina/farmacología , Ghrelina/metabolismo , Neuronas/efectos de los fármacos , Ácido Oleanólico/análogos & derivados , Receptores sigma/metabolismo , Saponinas/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Neuronas/citología , Neuronas/metabolismo , Ácido Oleanólico/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Receptor Sigma-1
16.
Front Pharmacol ; 9: 243, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29686613

RESUMEN

The central adenosine system and adenosine receptors play a fundamental role in the modulation of dopaminergic neurotransmission. This is mostly achieved by the strategic co-localization of different adenosine and dopamine receptor subtypes in the two populations of striatal efferent neurons, striatonigral and striatopallidal, that give rise to the direct and indirect striatal efferent pathways, respectively. With optogenetic techniques it has been possible to dissect a differential role of the direct and indirect pathways in mediating "Go" responses upon exposure to reward-related stimuli and "NoGo" responses upon exposure to non-rewarded or aversive-related stimuli, respectively, which depends on their different connecting output structures and their differential expression of dopamine and adenosine receptor subtypes. The striatopallidal neuron selectively expresses dopamine D2 receptors (D2R) and adenosine A2A receptors (A2AR), and numerous experiments using multiple genetic and pharmacological in vitro, in situ and in vivo approaches, demonstrate they can form A2AR-D2R heteromers. It was initially assumed that different pharmacological interactions between dopamine and adenosine receptor ligands indicated the existence of different subpopulations of A2AR and D2R in the striatopallidal neuron. However, as elaborated in the present essay, most evidence now indicates that all interactions can be explained with a predominant population of striatal A2AR-D2R heteromers forming complexes with adenylyl cyclase subtype 5 (AC5). The A2AR-D2R heteromer has a tetrameric structure, with two homodimers, which allows not only multiple allosteric interactions between different orthosteric ligands, agonists, and antagonists, but also the canonical Gs-Gi antagonistic interaction at the level of AC5. We present a model of the function of the A2AR-D2R heterotetramer-AC5 complex, which acts as an integrative device of adenosine and dopamine signals that determine the excitability and gene expression of the striatopallidal neurons. The model can explain most behavioral effects of A2AR and D2R ligands, including the psychostimulant effects of caffeine. The model is also discussed in the context of different functional striatal compartments, mainly the dorsal and the ventral striatum. The current accumulated knowledge of the biochemical properties of the A2AR-D2R heterotetramer-AC5 complex offers new therapeutic possibilities for Parkinson's disease, schizophrenia, SUD and other neuropsychiatric disorders with dysfunction of dorsal or ventral striatopallidal neurons.

17.
Nat Commun ; 9(1): 1242, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29593213

RESUMEN

G protein-coupled receptors (GPCRs), G proteins and adenylyl cyclase (AC) comprise one of the most studied transmembrane cell signaling pathways. However, it is unknown whether the ligand-dependent interactions between these signaling molecules are based on random collisions or the rearrangement of pre-coupled elements in a macromolecular complex. Furthermore, it remains controversial whether a GPCR homodimer coupled to a single heterotrimeric G protein constitutes a common functional unit. Using a peptide-based approach, we here report evidence for the existence of functional pre-coupled complexes of heteromers of adenosine A2A receptor and dopamine D2 receptor homodimers coupled to their cognate Gs and Gi proteins and to subtype 5 AC. We also demonstrate that this macromolecular complex provides the necessary frame for the canonical Gs-Gi interactions at the AC level, sustaining the ability of a Gi-coupled GPCR to counteract AC activation mediated by a Gs-coupled GPCR.


Asunto(s)
Adenilil Ciclasas/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Simulación por Computador , AMP Cíclico/metabolismo , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Ligandos , Proteínas Luminiscentes/metabolismo , Sustancias Macromoleculares , Neuronas/metabolismo , Péptidos/química , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Ratas , Ratas Sprague-Dawley , Transducción de Señal
18.
BMC Biol ; 16(1): 24, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29486745

RESUMEN

BACKGROUND: G-protein-coupled receptor (GPCR) heteromeric complexes have distinct properties from homomeric GPCRs, giving rise to new receptor functionalities. Adenosine receptors (A1R or A2AR) can form A1R-A2AR heteromers (A1-A2AHet), and their activation leads to canonical G-protein-dependent (adenylate cyclase mediated) and -independent (ß-arrestin mediated) signaling. Adenosine has different affinities for A1R and A2AR, allowing the heteromeric receptor to detect its concentration by integrating the downstream Gi- and Gs-dependent signals. cAMP accumulation and ß-arrestin recruitment assays have shown that, within the complex, activation of A2AR impedes signaling via A1R. RESULTS: We examined the mechanism by which A1-A2AHet integrates Gi- and Gs-dependent signals. A1R blockade by A2AR in the A1-A2AHet is not observed in the absence of A2AR activation by agonists, in the absence of the C-terminal domain of A2AR, or in the presence of synthetic peptides that disrupt the heteromer interface of A1-A2AHet, indicating that signaling mediated by A1R and A2AR is controlled by both Gi and Gs proteins. CONCLUSIONS: We identified a new mechanism of signal transduction that implies a cross-communication between Gi and Gs proteins guided by the C-terminal tail of the A2AR. This mechanism provides the molecular basis for the operation of the A1-A2AHet as an adenosine concentration-sensing device that modulates the signals originating at both A1R and A2AR.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P1/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Células HEK293 , Humanos , Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/genética
19.
Chemistry ; 23(7): 1676-1685, 2017 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-27885731

RESUMEN

Despite more than three decades of intense effort, no anti-Ras therapies have reached clinical application. Contributing to this failure has been an underestimation of Ras complexity and a dearth of structural information. In this regard, recent studies have revealed the highly dynamic character of the Ras surface and the existence of transient pockets suitable for small-molecule binding, opening up new possibilities for the development of Ras modulators. Herein, a novel Ras inhibitor (compound 12) is described that selectively impairs mutated Ras activity in a reversible manner without significantly affecting wild-type Ras, reduces the Ras-guanosine triphosphate (GTP) levels, inhibits the activation of the mitogen-activated protein kinase (MAPK) pathway, and exhibits remarkable cytotoxic activity in Ras-driven cellular models. The use of molecular dynamics simulations and NMR spectroscopy experiments has enabled the molecular bases responsible for the interactions between compound 12 and Ras protein to be explored. The new Ras inhibitor binds partially to the GTP-binding region and extends into the adjacent hydrophobic pocket delimited by switch II. Hence, Ras inhibitor 12 could represent a new compound for the development of more efficacious drugs to target Ras-driven cancers; a currently unmet clinical need.

20.
BMC Biol ; 14: 26, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27048449

RESUMEN

BACKGROUND: G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal structures, the structural properties of heteromers remain unknown. RESULTS: We used single-particle tracking experiments in cells expressing functional adenosine A1-A2A receptors fused to fluorescent proteins to show the loss of Brownian movement of the A1 receptor in the presence of the A2A receptor, and a preponderance of cell surface 2:2 receptor heteromers (dimer of dimers). Using computer modeling, aided by bioluminescence resonance energy transfer assays to monitor receptor homomerization and heteromerization and G-protein coupling, we predict the interacting interfaces and propose a quaternary structure of the GPCR tetramer in complex with two G proteins. CONCLUSIONS: The combination of results points to a molecular architecture formed by a rhombus-shaped heterotetramer, which is bound to two different interacting heterotrimeric G proteins (Gi and Gs). These novel results constitute an important advance in understanding the molecular intricacies involved in GPCR function.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/metabolismo , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/metabolismo , Animales , Células HEK293 , Proteínas de Unión al GTP Heterotriméricas/química , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA