Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1115, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849523

RESUMEN

The phenotype of the rare HIV-infected cells persisting during antiretroviral therapies (ART) remains elusive. We developed a single-cell approach that combines the phenotypic analysis of HIV-infected cells with near full-length sequencing of their associated proviruses to characterize the viral reservoir in 6 male individuals on suppressive ART. We show that individual cells carrying clonally expanded identical proviruses display very diverse phenotypes, indicating that cellular proliferation contributes to the phenotypic diversification of the HIV reservoir. Unlike most viral genomes persisting on ART, inducible and translation-competent proviruses rarely present large deletions but are enriched in defects in the Ψ locus. Interestingly, the few cells harboring genetically intact and inducible viral genomes express higher levels of the integrin VLA-4 compared to uninfected cells or cells with defective proviruses. Viral outgrowth assay confirmed that memory CD4+ T cells expressing high levels of VLA-4 are highly enriched in replication-competent HIV (27-fold enrichment). We conclude that although clonal expansions diversify the phenotype of HIV reservoir cells, CD4+ T cells harboring replication-competent HIV retain VLA-4 expression.


Asunto(s)
Linfocitos T CD4-Positivos , Integrina alfa4beta1 , Animales , Masculino , Bioensayo , Genoma Viral/genética , Fenotipo , Provirus/genética , VIH/genética
2.
Cell Rep Med ; 3(12): 100833, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36459994

RESUMEN

GM-CSF promotes myelopoiesis and inflammation, and GM-CSF blockade is being evaluated as a treatment for COVID-19-associated hyperinflammation. Alveolar GM-CSF is, however, required for monocytes to differentiate into alveolar macrophages (AMs) that control alveolar homeostasis. By mapping cross-species AM development to clinical lung samples, we discovered that COVID-19 is marked by defective GM-CSF-dependent AM instruction and accumulation of pro-inflammatory macrophages. In a multi-center, open-label RCT in 81 non-ventilated COVID-19 patients with respiratory failure, we found that inhalation of rhu-GM-CSF did not improve mean oxygenation parameters compared with standard treatment. However, more patients on GM-CSF had a clinical response, and GM-CSF inhalation induced higher numbers of virus-specific CD8 effector lymphocytes and class-switched B cells, without exacerbating systemic hyperinflammation. This translational proof-of-concept study provides a rationale for further testing of inhaled GM-CSF as a non-invasive treatment to improve alveolar gas exchange and simultaneously boost antiviral immunity in COVID-19. This study is registered at ClinicalTrials.gov (NCT04326920) and EudraCT (2020-001254-22).


Asunto(s)
COVID-19 , Macrófagos Alveolares , Humanos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Pulmón , Macrófagos
3.
PLoS Pathog ; 18(1): e1010245, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041707

RESUMEN

Activation of the NF-κB signaling pathway by Protein Kinase C (PKC) agonists is a potent mechanism for human immunodeficiency virus (HIV) latency disruption in vitro. However, significant toxicity risks and the lack of evidence supporting their activity in vivo have limited further evaluation of PKC agonists as HIV latency-reversing agents (LRA) in cure strategies. Here we evaluated whether GSK445A, a stabilized ingenol-B derivative, can induce HIV/simian immunodeficiency virus (SIV) transcription and virus production in vitro and demonstrate pharmacological activity in nonhuman primates (NHP). CD4+ T cells from people living with HIV and from SIV+ rhesus macaques (RM) on antiretroviral therapy (ART) exposed in vitro to 25 nM of GSK445A produced cell-associated viral transcripts as well as viral particles at levels similar to those induced by PMA/Ionomycin, indicating that GSK445A can potently reverse HIV/SIV latency. Importantly, these concentrations of GSK445A did not impair the proliferation or survival of HIV-specific CD8+ T cells, but instead, increased their numbers and enhanced IFN-γ production in response to HIV peptides. In vivo, GSK445A tolerability was established in SIV-naïve RM at 15 µg/kg although tolerability was reduced in SIV-infected RM on ART. Increases in plasma viremia following GSK445A administration were suggestive of increased SIV transcription in vivo. Collectively, these results indicate that GSK445A is a potent HIV/SIV LRA in vitro and has a tolerable safety profile amenable for further evaluation in vivo in NHP models of HIV cure/remission.


Asunto(s)
Diterpenos/farmacología , VIH , Proteína Quinasa C/efectos de los fármacos , Virus de la Inmunodeficiencia de los Simios , Activación Viral/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Animales , Humanos , Macaca mulatta , Proteína Quinasa C/metabolismo , ARN Viral/efectos de los fármacos , Transcripción Genética
4.
Nat Commun ; 12(1): 3727, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140517

RESUMEN

Clonal expansion of HIV-infected cells contributes to the long-term persistence of the HIV reservoir in ART-suppressed individuals. However, the contribution from cell clones that harbor inducible proviruses to plasma viremia is poorly understood. Here, we describe a single-cell approach to simultaneously sequence the TCR, integration sites and proviral genomes from translation-competent reservoir cells, called STIP-Seq. By applying this approach to blood samples from eight participants, we show that the translation-competent reservoir mainly consists of proviruses with short deletions at the 5'-end of the genome, often involving the major splice donor site. TCR and integration site sequencing reveal that cell clones with predicted pathogen-specificity can harbor inducible proviruses integrated into cancer-related genes. Furthermore, we find several matches between proviruses retrieved with STIP-Seq and plasma viruses obtained during ART and upon treatment interruption, suggesting that STIP-Seq can capture clones that are responsible for low-level viremia or viral rebound.


Asunto(s)
Antirretrovirales/uso terapéutico , Infecciones por VIH/sangre , Infecciones por VIH/tratamiento farmacológico , VIH-1/metabolismo , Provirus/genética , Análisis de la Célula Individual/métodos , Viremia/virología , Linfocitos T CD4-Positivos/virología , ADN Viral/sangre , Infecciones por VIH/virología , VIH-1/genética , VIH-1/patogenicidad , Humanos , Ionomicina/farmacología , Masculino , Persona de Mediana Edad , Filogenia , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Eliminación de Secuencia , Carga Viral/genética
5.
PLoS Pathog ; 15(2): e1007619, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30811499

RESUMEN

The phenotypic characterization of the cells in which HIV persists during antiretroviral therapy (ART) remains technically challenging. We developed a simple flow cytometry-based assay to quantify and characterize infected cells producing HIV proteins during untreated and treated HIV infection. By combining two antibodies targeting the HIV capsid in a standard intracellular staining protocol, we demonstrate that p24-producing cells can be detected with high specificity and sensitivity in the blood from people living with HIV. In untreated individuals, the frequency of productively infected cells strongly correlated with plasma viral load. Infected cells preferentially displayed a transitional memory phenotype and were enriched in Th17, peripheral Tfh and regulatory T cells subsets. These cells also preferentially expressed activation markers (CD25, HLA-DR, Ki67), immune checkpoint molecules (PD-1, LAG-3, TIGIT, Tim-3) as well as the integrins α4ß7 and α4ß1. In virally suppressed individuals on ART, p24-producing cells were only detected upon stimulation (median frequency of 4.3 p24+ cells/106 cells). These measures correlated with other assays assessing the size of the persistent reservoir including total and integrated HIV DNA, Tat/rev Induced Limiting Dilution Assay (TILDA) and quantitative viral outgrowth assay (QVOA). In ART-suppressed individuals, p24-producing cells preferentially displayed a transitional and effector memory phenotype, and expressed immune checkpoint molecules (PD-1, TIGIT) as well as the integrin α4ß1. Remarkably, α4ß1 was expressed by more than 70% of infected cells both in untreated and ART-suppressed individuals. Altogether, these results highlight a broad diversity in the phenotypes of HIV-infected cells in treated and untreated infection and suggest that strategies targeting multiple and phenotypically distinct cellular reservoirs will be needed to exert a significant impact on the size of the reservoir.


Asunto(s)
Citometría de Flujo/métodos , Infecciones por VIH/inmunología , VIH/fisiología , Adulto , Antirretrovirales , Linfocitos T CD4-Positivos , Reservorios de Enfermedades/virología , Femenino , VIH/patogenicidad , Proteína p24 del Núcleo del VIH , Infecciones por VIH/virología , VIH-1/inmunología , VIH-1/patogenicidad , Humanos , Integrina alfa4beta1/metabolismo , Masculino , Persona de Mediana Edad , Fenotipo , ARN Viral , Análisis de la Célula Individual/métodos , Subgrupos de Linfocitos T , Carga Viral , Latencia del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA