Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Commun Biol ; 6(1): 298, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36944712

RESUMEN

Cerebral blood flow (CBF) is widely used to assess brain function. However, most preclinical CBF studies have been performed under anesthesia, which confounds findings. High spatiotemporal-resolution CBF imaging of awake animals is challenging due to motion artifacts and background noise, particularly for Doppler-based flow imaging. Here, we report ultrahigh-resolution optical coherence Doppler tomography (µODT) for 3D imaging of CBF velocity (CBFv) dynamics in awake mice by developing self-supervised deep-learning for effective image denoising and motion-artifact removal. We compare cortical CBFv in awake vs. anesthetized mice and their dynamic responses in arteriolar, venular and capillary networks to acute cocaine (1 mg/kg, i.v.), a highly addictive drug associated with neurovascular toxicity. Compared with awake, isoflurane (2-2.5%) induces vasodilation and increases CBFv within 2-4 min, whereas dexmedetomidine (0.025 mg/kg, i.p.) does not change vessel diameters nor flow. Acute cocaine decreases CBFv to the same extent in dexmedetomidine and awake states, whereas decreases are larger under isoflurane, suggesting that isoflurane-induced vasodilation might have facilitated detection of cocaine-induced vasoconstriction. Awake mice after chronic cocaine show severe vasoconstriction, CBFv decreases and vascular adaptations with extended diving arteriolar/venular vessels that prioritize blood supply to deeper cortical capillaries. The 3D imaging platform we present provides a powerful tool to study dynamic changes in vessel diameters and morphology alongside CBFv networks in the brain of awake animals that can advance our understanding of the effects of drugs and disease conditions (ischemia, tumors, wound healing).


Asunto(s)
Cocaína , Dexmedetomidina , Isoflurano , Ratones , Animales , Isoflurano/farmacología , Imagenología Tridimensional/métodos , Vigilia , Dexmedetomidina/farmacología , Circulación Cerebrovascular/fisiología , Tomografía de Coherencia Óptica/métodos , Cocaína/farmacología
2.
Quant Imaging Med Surg ; 11(3): 998-1009, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33654672

RESUMEN

BACKGROUND: Genetically encoded calcium indicators (GECIs), especially the GCaMP-based green fluorescence GECIs have been widely used for in vivo detection of neuronal activity in rodents by measuring intracellular neuronal Ca2+ changes. More recently, jRGECO1a, a red shifted GECI, has been reported to detect neuronal Ca2+ activation. This opens the possibility of using dual-color GECIs for simultaneous interrogation of different cell populations. However, there has been no report to compare the functional difference between these two GECIs for in vivo imaging. Here, a comparative study is reported on neuronal responses to sensory stimulation using GCaMP6f and jRGECO1a that were virally delivered into the neurons in the somatosensory cortex of two different groups of animals, respectively. METHODS: GCaMP6f and jRGECO1a GECI were virally delivered to sensory cortex. After 3-4 weeks, the animals were imaged to capture the spatiotemporal changes of neuronal Ca2+ and the hemodynamic responses to forepaw electrical stimulation (0.3 mA, 0.3 ms/pulse, 0.03 Hz). The stimulation-evoked neuronal Ca2+ transients expressed with GCaMP6f or jRGECO1a were recorded during the baseline period and after an acute cocaine administration (1 mg/kg, i.v.). RESULTS: Histology confirmed that the efficiency of jRGECO1a and GCaMP6f expression into the cortical neurons was similar, i.e., 34%±3% and 32.7%±1.6%, respectively. Our imaging in vivo showed that the hemodynamic responses to the stimulation were the same between jRGECO1a and GCaMP6f expressed groups. Although the stimulation-evoked fluorescence change (∆F/F) and the time-to-peak of the neuronal Ca2+ transients were not significantly different between these two indicators, the full-width-half-maximum (FWHM) duration of the ∆F/F rise in the jRGECO1a-expressed group (0.16±0.02 s) was ~50 ms or 46% longer than that of the GCaMP6f group (0.11±0.003 s), indicating a longer recovery time in jRGECO1a than in GCaMP6f transients (P<0.01). This is likely due to the longer off rate of jRGECO1a than that of GCaMP6f. After cocaine, the time-to-peak of Ca2+ transients was delayed and their FWHM duration was prolonged for both expression groups, indicating that these are cocaine's effects on neuronal Ca2+ signaling and not artifacts due to the property differences of the GCEIs. CONCLUSIONS: This study shows that both jRGECO1a and GCaMP6f have sufficient sensitivity for tracking single-stimulation-evoked Ca2+ transients to detect neuronal activities from the brain. Since these GECIs are emitted at the different wavelengths, it will be possible to use them together to characterize the activity of different cell types (e.g., neurons and astrocytes) to study brain activation and brain functional changes in normal or diseased brains.

3.
J Biophotonics ; 13(3): e201960091, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31778294

RESUMEN

Accurate detection of early tumor margin is of great preclinical and clinical implications for predicting the survival rate of subjects and assessing the response of tumor microenvironment to chemotherapy or radiation therapy. Here, we report a multimodality optical imaging study on in vivo detection of tumor boundary by analyzing neoangiogenesis of tumor microenvironment (microangiography), microcirculatory blood flow (optical Doppler tomography) and tumor proliferation (green fluorescent protein [GFP] fluorescence). Microangiography demonstrates superior sensitivity (77.7 ± 6.4%) and specificity (98.2 ± 1.7%) over other imaging technologies (eg, optical coherence tomography) for tumor margin detection. Additionally, we report longitudinal in vivo imaging of tumor progression and show that the abrupt tumor cell proliferation did not occur until local capillary density and cerebral blood flow reached their peak approximately 2 weeks after tumor implantation. The unique capability of longitudinal multimodality imaging of tumor angiogenesis may provide new insights in tumor biology and in vivo assessment of the treatment effects on anti-angiogenesis therapy for brain cancer.


Asunto(s)
Angiografía , Tomografía de Coherencia Óptica , Capilares , Circulación Cerebrovascular , Microcirculación
4.
Quant Imaging Med Surg ; 5(1): 97-107, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25694959

RESUMEN

Cocaine-induced stroke is among the most serious medical complications associated with cocaine's abuse. However, the extent to which chronic cocaine may induce silent microischemia predisposing the cerebral tissue to neurotoxicity has not been investigated; in part, because of limitations of current neuroimaging tools, that is, lack of high spatiotemporal resolution and sensitivity to simultaneously measure cerebral blood flow (CBF) in vessels of different calibers quantitatively and over a large field of view (FOV). Optical coherence tomography (OCT) technique allows us to image three dimensional (3D) cerebrovascular network (including artery, vein, and capillary), and provides high resolution angiography of the cerebral vasculature and quantitative CBF velocity (CBFv) within the individual vessels in the network. In order to monitor the neurovascular changes from an in vivo brain along with the chronic cocaine exposure, we have developed an approach of implanting a cranial window on mouse brain to achieve long-term cortical imaging. The cranial window was implanted on sensorimotor cortex area in two animal groups, i.e., control group [saline treatment, ~0.1 cc/10 g/day, intraperitoneal injection (i.p.)] and chronic cocaine group (cocaine treatment, 30 mg/kg/day i.p.). After implantation, the cortex of individual animal was periodically imaged by OCT and stereoscope to provide angiography and quantitative CBFv of the cerebral vascular network, as well as the surface imaging of the brain. We have observed vascular hemodynamic changes (i.e., CBFv changes) induced by the cranial preparation in both animal groups, including the inflammatory response of brain shortly after the surgery (i.e., <5 days) followed by wound-healing process (i.e., >5 days) in the brain. Importantly, by comparing with the control animals, the surgical-related vascular physiology changes in the cortex can be calibrated, so that the cocaine-induced hemodynamic changes in the neurovasculature can be determined in the cocaine animals. Our results demonstrate that this methodology can be used to explore the neurovascular functional changes induced by the brain diseases such as drug addiction.

5.
Neuroimage ; 103: 492-501, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25192654

RESUMEN

Despite widespread applications of multiphoton microscopy in microcirculation, its small field of view and inability to instantaneously quantify cerebral blood flow velocity (CBFv) in vascular networks limit its utility in investigating the heterogeneous responses to brain stimulations. Optical Doppler tomography (ODT) provides 3D images of CBFv networks, but it suffers poor sensitivity for measuring capillary flows. Here we report on a new method, contrast-enhanced ODT with Intralipid that significantly improves quantitative CBFv imaging of capillary networks by obviating the errors from long latency between flowing red blood cells (low hematocrit ~20% in capillaries). This enhanced sensitivity allowed us to measure the ultraslow microcirculation surrounding a brain tumor and the abnormal ingrowth of capillary flows in the tumor as well as in ischemia triggered by chronic cocaine in the mouse brain that could not be detected by regular ODT. It also enabled significantly enhanced sensitivity for quantifying the heterogeneous CBFv responses of vascular networks to acute cocaine exposure. Inasmuch as lipid emulsions are widely used for parenteral nutrition the Intralipid contrast method has translational potential for clinical applications.


Asunto(s)
Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Imagenología Tridimensional/métodos , Microvasos/ultraestructura , Tomografía de Coherencia Óptica/métodos , Animales , Isquemia Encefálica/fisiopatología , Neoplasias Encefálicas/irrigación sanguínea , Emulsiones , Femenino , Imagen por Resonancia Magnética , Ratones , Fosfolípidos , Aceite de Soja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA