Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biotechnol ; 395: 31-43, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39244092

RESUMEN

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide, and classifying the developmental stages of HCC can help with early prognosis and treatment. This study aimed to investigate diagnostic and prognostic molecular signatures underlying the progression of HCC, including tumor initiation and growth, and to classify its developmental stages based on gene expression levels. We integrated data from two cancer systems, including 78 patients with Edmondson-Steiner (ES) grade and 417 patients with TNM stage cancer. Functional profiling was performed using identified signatures. Using a multinomial logistic regression model (MLR), we classified controls, early-stage HCC, and advanced-stage HCC. The model was validated in three independent cohorts comprising 45 patients (neoplastic stage), 394 patients (ES grade), and 466 patients (TNM stage). Multivariate Cox regression was employed for HCC prognosis prediction. We identified 35 genes with gradual upregulation or downregulation in both ES grade and TNM stage patients during HCC progression. These genes are involved in cell division, chromosome segregation, and mitotic cytokinesis, promoting tumor cell proliferation through the mitotic cell cycle. The MLR model accurately differentiated controls, early-stage HCC, and advanced-stage HCC across multiple cancer systems, which was further validated in various independent cohorts. Survival analysis revealed a subset of five genes from TNM stage (HR: 3.27, p < 0.0001) and three genes from ES grade (HR: 7.56, p < 0.0001) that showed significant association with HCC prognosis. The identified molecular signature not only initiates tumorigenesis but also promotes HCC development. It has the potential to improve clinical diagnosis, prognosis, and therapeutic interventions for HCC. This study enhances our understanding of HCC progression and provides valuable insights for precision medicine approaches.

2.
J Microbiol Biotechnol ; 34(8): 1698-1704, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39113194

RESUMEN

Therapeutic advancements in treatments for cancer, a leading cause of mortality worldwide, have lagged behind the increasing incidence of this disease. There is a growing interest in multifaceted approaches for cancer treatment, such as chemotherapy, targeted therapy, and immunotherapy, but due to their low efficacy and severe side effects, there is a need for the development of new cancer therapies. Recently, the human microbiome, which is comprised of various microorganisms, has emerged as an important research field due to its potential impact on cancer treatment. Among these microorganisms, Bifidobacterium infantis has been shown to significantly improve the efficacy of various anticancer drugs. However, research on the role of B. infantis in cancer treatment remains insufficient. Thus, in this study, we explored the anticancer effect of treatment with B. infantis DS1685 supernatant (BI sup) in colorectal and breast cancer cell lines. Treatment with BI sup induced SMAD4 expression to suppress cell growth in colon and breast cancer cells. Furthermore, a decrease in tumor cohesion was observed through the disruption of the regulation of EMT-related genes by BI sup in 3D spheroid models. Based on these findings, we anticipate that BI sup could play an adjunctive role in cancer therapy, and future cotreatment of BI sup with various anticancer drugs may lead to synergistic effects in cancer treatment.


Asunto(s)
Bifidobacterium longum subspecies infantis , Neoplasias de la Mama , Neoplasias Colorrectales , Proteína Smad4 , Factor de Crecimiento Transformador beta , Humanos , Proteína Smad4/metabolismo , Proteína Smad4/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Línea Celular Tumoral , Factor de Crecimiento Transformador beta/metabolismo , Bifidobacterium longum subspecies infantis/metabolismo , Bifidobacterium longum subspecies infantis/genética , Femenino , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Probióticos , Antineoplásicos/farmacología
3.
Life Sci ; 314: 121195, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436619

RESUMEN

AIMS: The timely diagnosis of different stages in NAFLD is crucial for disease treatment and reversal. We used hepatocellular ballooning to determine different NAFLD stages. MAIN METHODS: We analyzed differentially expressed genes (DEGs) in 78 patients with NAFLD and in healthy controls from previously published RNA-seq data. We identified two expression types in NAFLD progression, calculated the predictive power of candidate genes, and validated them in an independent cohort. We also performed cancer studies with these candidates retrieved from the Cancer Genome Atlas. KEY FINDINGS: We identified 103 DEGs in NAFLD patients compared to healthy controls: 75 genes gradually increased or decreased in the NAFLD stage, whereas 28 genes showed differences only in NASH. The former were enriched in negative regulation and binding-related genes; the latter were involved in positive regulation and cell proliferation. Feature selection showed the gradual up- or down-regulation of 21 genes in NASH compared to controls; 18 were highly expressed only in NASH. Using deep-learning method with subset of features from lasso regression, we obtained reliable determination performance in NAFL and NASH (accuracy: 0.857) and validated these genes using an independent cohort (accuracy: 0.805). From cancer studies, we identified significant differential expression of several candidate genes in LIHC; 5 genes were gradually up-regulated and 6 showing high expression only in NASH were influential to patient survival. SIGNIFICANCE: The identified biomolecular signatures may determine the spectrum of NAFLD and its relationship with HCC, improving clinical diagnosis and prognosis and enabling a therapeutic intervention for NAFLD.


Asunto(s)
Carcinoma Hepatocelular , Aprendizaje Profundo , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Hígado/metabolismo
4.
ISME J ; 16(5): 1205-1221, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34972816

RESUMEN

The human microbiome plays an essential role in the human immune system, food digestion, and protection from harmful bacteria by colonizing the human intestine. Recently, although the human microbiome affects colorectal cancer (CRC) treatment, the mode of action between the microbiome and CRC remains unclear. This study showed that propionate suppressed CRC growth by promoting the proteasomal degradation of euchromatic histone-lysine N-methyltransferase 2 (EHMT2) through HECT domain E3 ubiquitin protein ligase 2 (HECTD2) upregulation. In addition, EHMT2 downregulation reduced the H3K9me2 level on the promoter region of tumor necrosis factor α-induced protein 1 (TNFAIP1) as a novel direct target of EHMT2. Subsequently, TNFAIP1 upregulation induced the apoptosis of CRC cells. Furthermore, using Bacteroides thetaiotaomicron culture medium, we confirmed EHMT2 downregulation via upregulation of HECTD2 and TNFAIP1 upregulation. Finally, we observed the synergistic effect of propionate and an EHMT2 inhibitor (BIX01294) in 3D spheroid culture models. Thus, we suggest the anticancer effects of propionate and EHMT2 as therapeutic targets for colon cancer treatment and may provide the possibility for the synergistic effects of an EHMT2 inhibitor and microbiome in CRC treatment.


Asunto(s)
Neoplasias Colorrectales , Microbiota , Ubiquitina-Proteína Ligasas/metabolismo , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Propionatos , Regulación hacia Arriba
5.
Mol Med Rep ; 25(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35029293

RESUMEN

Particulate matter (PM) can be categorized by particle size (PM10, PM2.5 and PM1.0), which is an important factor affecting the biological response. Exposure to PM in the air (dust, smoke, dirt and biological contaminants) is clearly associated with lung disease (lung cancer, pneumonia and asthma). Although PM primarily affects lung epithelial cells, the specific response of related cell types to PM remains to be elucidated. The present study performed Gene Ontology (GO) analysis programs (Clustering GO and Database for Annotation, Visualization and Integrated Discovery) on differentially expressed genes in lung epithelial cells (WI­38 VA­13) and fibroblasts (WI­38) following treatment with PM10 and evaluated the cell­specific biological responses related to cell proliferation, apoptosis, adhesion and extracellular matrix production. The results suggested that short­ or long­term exposure to PM may affect cell condition and may consequently be related to several human diseases, including lung cancer and cardiopulmonary disease.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Material Particulado/efectos adversos , Transcriptoma , Contaminantes Atmosféricos , Contaminación del Aire , Adhesión Celular , Línea Celular , Matriz Extracelular/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pulmón , RNA-Seq
6.
Mol Oncol ; 15(11): 2989-3002, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34214254

RESUMEN

Dozens of histone methyltransferases have been identified and biochemically characterized, but the pathological roles of their dysfunction in human diseases such as cancer remain largely unclear. Here, we demonstrate the involvement of EHMT1, a histone lysine methyltransferase, in lung cancer. Immunohistochemical analysis indicated that the expression levels of EHMT1 are significantly elevated in human lung carcinomas compared with non-neoplastic lung tissues. Through gene ontology analysis of RNA-seq results, we showed that EHMT1 is clearly associated with apoptosis and the cell cycle process. Moreover, FACS analysis and cell growth assays showed that knockdown of EHMT1 induced apoptosis and G1 cell cycle arrest via upregulation of CDKN1A in A549 and H1299 cell lines. Finally, in 3D spheroid culture, compared to control cells, EHMT1 knockdown cells exhibited reduced aggregation of 3D spheroids and clear upregulation of CDKN1A and downregulation of E-cadherin. Therefore, the results of the present study suggest that EHMT1 plays a critical role in the regulation of cancer cell apoptosis and the cell cycle by modulating CDKN1A expression. Further functional analyses of EHMT1 in the context of human tumorigenesis may aid in the development of novel therapeutic strategies for cancer.


Asunto(s)
Neoplasias Pulmonares , Apoptosis/genética , Ciclo Celular , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología
7.
J Transl Med ; 19(1): 250, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34098982

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic and idiopathic inflammatory disorder of the gastrointestinal tract and comprises ulcerative colitis (UC) and Crohn's disease (CD). Crohn's disease can affect any part of the gastrointestinal tract, but mainly the terminal ileum and colon. In the present study, we aimed to characterize terminal-ileal CD (ICD) and colonic CD (CCD) at the molecular level, which might enable a more optimized approach for the clinical care and scientific research of CD. METHODS: We analyzed differentially expressed genes in samples from 23 treatment-naïve paediatric patients with CD and 25 non-IBD controls, and compared the data with previously published RNA-Seq data using multi-statistical tests and confidence intervals. We implemented functional profiling and proposed statistical methods for feature selection using a logistic regression model to identify genes that are highly associated in ICD or CCD. We also validated our final candidate genes in independent paediatric and adult cohorts. RESULTS: We identified 550 genes specifically expressed in patients with CD compared with those in healthy controls (p < 0.05). Among these DEGs, 240 from patients with CCD were mainly involved in mitochondrial dysfunction, whereas 310 from patients with ICD were enriched in the ileum functions such as digestion, absorption, and metabolism. To choose the most effective gene set, we selected the most powerful genes (p-value ≤ 0.05, accuracy ≥ 0.8, and AUC ≥ 0.8) using logistic regression. Consequently, 33 genes were identified as useful for discriminating CD location; the accuracy and AUC were 0.86 and 0.83, respectively. We then validated the 33 genes with data from another independent paediatric cohort (accuracy = 0.93, AUC = 0.92) and adult cohort (accuracy = 0.88, AUC = 0.72). CONCLUSIONS: In summary, we identified DEGs that are specifically expressed in CCD and ICD compared with those in healthy controls and patients with UC. Based on the feature selection analysis, 33 genes were identified as useful for discriminating CCD and ICD with high accuracy and AUC, for not only paediatric patients but also independent cohorts. We propose that our approach and the final gene set are useful for the molecular classification of patients with CD, and it could be beneficial in treatments based on disease location.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Adulto , Niño , Enfermedad de Crohn/genética , Humanos , Íleon , Modelos Logísticos , Transcriptoma/genética
8.
Sci Adv ; 7(23)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34078609

RESUMEN

Advanced technologies are required for generating human intestinal epithelial cells (hIECs) harboring cellular diversity and functionalities to predict oral drug absorption in humans and study normal intestinal epithelial physiology. We developed a reproducible two-step protocol to induce human pluripotent stem cells to differentiate into highly expandable hIEC progenitors and a functional hIEC monolayer exhibiting intestinal molecular features, cell type diversity, and high activities of intestinal transporters and metabolic enzymes such as cytochrome P450 3A4 (CYP3A4). Functional hIECs are more suitable for predicting compounds metabolized by CYP3A4 and absorbed in the intestine than Caco-2 cells. This system is a step toward the transition from three-dimensional (3D) intestinal organoids to 2D hIEC monolayers without compromising cellular diversity and function. A physiologically relevant hIEC model offers a novel platform for creating patient-specific assays and support translational applications, thereby bridging the gap between 3D and 2D culture models of the intestine.


Asunto(s)
Citocromo P-450 CYP3A , Mucosa Intestinal , Células CACO-2 , Citocromo P-450 CYP3A/metabolismo , Células Epiteliales/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Organoides/metabolismo
9.
Comput Struct Biotechnol J ; 18: 2639-2646, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33033583

RESUMEN

Papillary renal cell carcinoma (pRCC), which accounts for 10-15% of renal cell carcinomas, is the second most frequent renal cell carcinoma. pRCC patient classification is difficult because of disease heterogeneity, histologic subtypes, and variations in both disease progression and patient outcomes. Nevertheless, symptom-based patient classification is indispensable in deciding treatment options. Here we introduce a prediction method for distinguishing pRCC pathological tumour stages using deep learning and similarity-based hierarchical clustering approaches. Differentially expressed genes (DEGs) were identified from gene expression data of pRCC patients retrieved from TCGA. Thirty-three of these genes were distinguished based on expression in early or late stage pRCC using the Wilcoxon rank sum test, confidence interval, and LASSO regression. Then, a deep learning model was constructed to predict tumour progression with an accuracy of 0.942 and area under curve of 0.933. Furthermore, pathological sub-stage information with an accuracy of 0.857 was obtained via similarity-based hierarchical clustering using 18 DEGs between stages I and II, and 11 DEGs between stages III and IV, identified through Wilcoxon rank sum test and quantile approach. Additionally, we offer this classification process as an R function. This is the first report of a model distinguishing the pathological tumour stages of pRCC using deep learning and similarity-based hierarchical clustering methods. Our findings are potentially applicable for improving early detection and treatment of pRCC and establishing a clearer classification of the pathological stages in other tumours.

10.
Theranostics ; 10(11): 5048-5063, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32308767

RESUMEN

Several phase 1/2 clinical trials showed that low-dose interleukin-2 (IL-2) treatment is a safe and effective strategy for the treatment of chronic graft-versus-host disease, hepatitis C virus-induced vasculitis, and type 1 diabetes. Ulcerative colitis (UC) is a chronic inflammatory condition of the colon that lacks satisfactory treatment. In this study, we aimed to determine the effects of low-dose IL-2 as a therapeutic for UC on dextran sulfate sodium (DSS)-induced colitis. Methods: Mice with DSS-induced colitis were intraperitoneally injected with low-dose IL-2. Survival, body weight, disease activity index, colon length, histopathological score, myeloperoxidase activity and inflammatory cytokine levels as well as intestinal barrier integrity were examined. Differential gene expression after low-dose IL-2 treatment was analyzed by RNA-sequencing. Results: Low-dose IL-2 significantly improved the symptoms of DSS-induced colitis in mice and attenuated pro-inflammatory cytokine production and immune cell infiltration. The most effective dose range of IL-2 was 16K-32K IU/day. Importantly, low-dose IL-2 was effective in ameliorating the disruption of epithelial barrier integrity in DSS-induced colitis tissues by restoring tight junction proteins and mucin production and suppressing apoptosis. The colon tissue of DSS-induced mice exposed to low-dose IL-2 mimic gene expression patterns in the colons of control mice. Furthermore, we identified the crucial role of the PI3K-AKT pathway in exerting the therapeutic effect of low-dose IL-2. Conclusions: The results of our study suggest that low-dose IL-2 has therapeutic effects on DSS-induced colitis and potential clinical value in treating UC.


Asunto(s)
Colitis/tratamiento farmacológico , Sulfato de Dextran/toxicidad , Inflamación/prevención & control , Interleucina-2/farmacología , Mucosa Intestinal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/química , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
11.
Antonie Van Leeuwenhoek ; 110(1): 145-152, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28012139

RESUMEN

Vibrio species are well known as motile, mostly oxidase-positive, facultative anaerobic Gram-negative bacteria. They are abundant in aquatic environments and are a common cause of human infections including diarrhea, soft tissue diseases, and bacteremia. Here, two Gram-negative bacteria, designated M12-1144T and M12-1181, were isolated from human clinical specimens and identified using a polyphasic taxonomic approach. Phylogenetic study based on 16S rRNA gene sequence analysis revealed that the isolates belong to the genus Vibrio, and are closely related to Vibrio metschnikovii KCTC 32284T (98.3%) and Vibrio cincinnatiensis KCTC 2733T (97.8%). The major fatty acids were summed feature 3 (C16:1 ω7c/C16:1 ω6c, 38.0%), C16:0 (23.0%), and summed feature 8 (C18:1 ω7c or C18:1 ω6c, 19.3%) and major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The G + C content of the genomic DNA was determined to be 44.1 mol%. DNA-DNA relatedness between the two newly isolated strains and V. metschnikovii KCTC 32284T and V. cincinnatiensis KCTC 2733T was between 42.6 to 47.5%. The similarities of genome-to-genome distance between M12-1144T and related species ranged from 18.4-54.8%. Based on these results, a new species of the genus Vibrio, Vibrio injenensis is proposed. The type strain is M12-1144 T(=KCTC 32233T =JCM 30011T).


Asunto(s)
Vibriosis/microbiología , Vibrio/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , ADN Ribosómico/genética , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Humanos , Filogenia , ARN Ribosómico 16S/genética , Vibrio/clasificación , Vibrio/metabolismo
12.
Oncotarget ; 6(27): 23837-44, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26125227

RESUMEN

TALE-nuclease chimeras (TALENs) can bind to and cleave specific genomic loci and, are used to engineer gene knockouts and additions. Recently, instead of using the FokI domain, epigenetically active domains, such as TET1 and LSD1, have been combined with TAL effector domains to regulate targeted gene expression via DNA and histone demethylation. However, studies of histone methylation in the TALE system have not been performed. Therefore, in this study, we established a novel targeted regulation system with a TAL effector domain and a histone methylation domain. To construct a TALE-methylation fusion protein, we combined a TAL effector domain containing an E-Box region to act as a Snail binding site and the SET domain of EHMT 2 to allow for histone methylation. The constructed TALE-SET module (TSET) repressed the expression of E-cadherin via by increasing H3K9 dimethylation. Moreover, the cells that overexpressed TSET showed increased cell migration and invasion. This is the first phenotype-based study of targeted histone methylation by the TALE module, and this new system can be applied in new cancer therapies to reduce side effects.


Asunto(s)
Cadherinas/metabolismo , Metilación de ADN/genética , Chaperonas de Histonas/genética , Proteínas de Homeodominio/genética , Neoplasias/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Sitios de Unión/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proteínas de Unión al ADN/genética , Transición Epitelial-Mesenquimal/genética , Células HCT116 , Células HeLa , Histonas/metabolismo , Humanos , Invasividad Neoplásica/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Cicatrización de Heridas
13.
Funct Integr Genomics ; 12(1): 45-61, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22231539

RESUMEN

Recently, conjoined genes (CGs) have emerged as important genetic factors necessary for understanding the human genome. However, their formation mechanism and precise structures have remained mysterious. Based on a detailed structural analysis of 57 human CG transcript variants (CGTVs, discovered in this study) and all (833) known CGs in the human genome, we discovered that the poly(A) signal site from the upstream parent gene region is completely removed via the skipping or truncation of the final exon; consequently, CG transcription is terminated at the poly(A) signal site of the downstream parent gene. This result led us to propose a novel mechanism of CG formation: the complete removal of the poly(A) signal site from the upstream parent gene is a prerequisite for the CG transcriptional machinery to continue transcribing uninterrupted into the intergenic region and downstream parent gene. The removal of the poly(A) signal sequence from the upstream gene region appears to be caused by a deletion or truncation mutation in the human genome rather than post-transcriptional trans-splicing events. With respect to the characteristics of CG sequence structures, we found that intergenic regions are hot spots for novel exon creation during CGTV formation and that exons farther from the intergenic regions are more highly conserved in the CGTVs. Interestingly, many novel exons newly created within the intergenic and intragenic regions originated from transposable element sequences. Additionally, the CGTVs showed tumor tissue-biased expression. In conclusion, our study provides novel insights into the CG formation mechanism and expands the present concepts of the genetic structural landscape, gene regulation, and gene formation mechanisms in the human genome.


Asunto(s)
Exones , Genoma Humano , Mutagénesis , Proteínas Mutantes Quiméricas/genética , Regiones no Traducidas 3' , Empalme Alternativo , Secuencia de Bases , Clonación Molecular , Células HEK293 , Humanos , Proteínas Mutantes Quiméricas/metabolismo , Neoplasias/metabolismo , Poliadenilación , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Eliminación de Secuencia , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA