Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Death Differ ; 25(11): 1921-1937, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30042494

RESUMEN

Muscle differentiation is a crucial process controlling muscle development and homeostasis. Mitochondrial reactive oxygen species (mtROS) rapidly increase and function as critical cell signaling intermediates during the muscle differentiation. However, it has not yet been elucidated how they control myogenic signaling. Autophagy, a lysosome-mediated degradation pathway, is importantly recognized as intracellular remodeling mechanism of cellular organelles during muscle differentiation. Here, we demonstrated that the mtROS stimulated phosphatidylinositol 3 kinase/AKT/mammalian target of rapamycin (mTOR) cascade, and the activated mTORC1 subsequently induced autophagic signaling via phosphorylation of uncoordinated-51-like kinase 1 (ULK1) at serine 317 and upregulation of Atg proteins to prompt muscle differentiation. Treatment with MitoQ or rapamycin impaired both phosphorylation of ULK1 and expression of Atg proteins. Therefore, we propose a novel regulatory paradigm in which mtROS are required to initiate autophagic reconstruction of cellular organization through mTOR activation in muscle differentiation.


Asunto(s)
Autofagia , Mitocondrias/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Ratones , Mitocondrias/efectos de los fármacos , Compuestos Organofosforados/farmacología , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/genética , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Superóxido Dismutasa/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacología
2.
FEBS J ; 281(19): 4421-38, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25065674

RESUMEN

Numerous physiological functions are controlled by redox-responsive signaling pathways. Disruption of redox balance by oxidative stress is recognized as a major cause of many pathological conditions, including aging, highlighting the importance of investigating how antioxidants maintain redox homeostasis. AMP-activated protein kinase (AMPK) is activated in response to cellular conditions that accompany energy depletion and plays a central role in the regulation of energy homeostasis, tumorigenesis and longevity. Recently, several antioxidants have been reported to activate AMPK, although the mechanisms by which AMPK acts to adjust the levels of cellular reactive oxygen species are not fully characterized. In the present study, we investigated the role of AMPK in mediating resveratrol-induced antioxidant effects and the molecular mechanisms underlying its actions. We demonstrate that AMPK activity plays an indispensable role in the operation of the ROS defense system by inducing the expression of the antioxidant enzymes, manganese superoxide dismutase and catalase, in response to resveratrol or the AMPK agonist 5-aminoimidazole-4-carboxamide-1-ß-d-ribonucleotide. In addition, we identified the mechanism involved in the antioxidant function of AMPK, demonstrating that AMPK directly phosphorylates human FoxO1 (forkhead box O1) at Thr(649) in vitro and increases FoxO1-dependent transcription of manganese superoxide dismutase and catalase. Mutagenesis studies showed that this AMPK-mediated phosphorylation of FoxO1 is critical for FoxO1 stability and nuclear localization, establishing the molecular basis for the induction of FoxO1 transcriptional activity. Our results reveal a novel FoxO1-dependent mechanism by which AMPK controls the expression of antioxidant enzymes and suggest that AMPK has an important role in maintaining redox homeostasis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Antioxidantes/farmacología , Factores de Transcripción Forkhead/metabolismo , Estilbenos/farmacología , Transporte Activo de Núcleo Celular , Animales , Proteína Forkhead Box O1 , Células HEK293 , Células Hep G2 , Humanos , Ratones , Fosforilación , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Especies Reactivas de Oxígeno/metabolismo , Resveratrol , Transcripción Genética , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA