Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Neuro Oncol ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38085571

RESUMEN

BACKGROUND: Reactive astrogliosis is a hallmark of various brain pathologies, including neurodegenerative diseases and glioblastomas. However, the specific intermediate metabolites contributing to reactive astrogliosis remain unknown. This study investigated how glioblastomas induce reactive astrogliosis in the neighboring microenvironment and explores 11C-acetate PET as an imaging technique for detecting reactive astrogliosis. METHODS: Through in vitro, mouse models, and human tissue experiments, we examined the association between elevated 11C-acetate uptake and reactive astrogliosis in gliomas. We explored acetate from glioblastoma cells, which triggers reactive astrogliosis in neighboring astrocytes by upregulating MAO-B and MCT1 expression. We evaluated the presence of cancer stem cells in the reactive astrogliosis region of glioblastomas and assessed the correlation between the volume of 11C-acetate uptake beyond MRI and prognosis. RESULTS: Elevated 11C-acetate uptake is associated with reactive astrogliosis and astrocytic MCT1 in the periphery of glioblastomas in human tissues and mouse models. Glioblastoma cells exhibit increased acetate production as a result of glucose metabolism, with subsequent secretion of acetate. Acetate derived from glioblastoma cells induces reactive astrogliosis in neighboring astrocytes by increasing the expression of MAO-B and MCT1. We found cancer stem cells within the reactive astrogliosis at the tumor periphery. Consequently, a larger volume of 11C-acetate uptake beyond contrast-enhanced MRI was associated with worse prognosis. CONCLUSION: Our results highlight the role of acetate derived from glioblastoma cells in inducing reactive astrogliosis and underscore the potential value of 11C-acetate PET as an imaging technique for detecting reactive astrogliosis, offering important implications for the diagnosis and treatment of glioblastomas.

2.
Eur J Med Chem ; 256: 115433, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37187090

RESUMEN

Many studies have reported that chalcone-based compounds exhibit biological activities such as anticancer, antioxidant, anti-inflammatory and neuroprotective effects. Among the published chalcone derivatives, (E)-1-(3-methoxypyridin-2-yl)-3-(2-(trifluoromethyl)phenyl)prop-2-en-1-one (VEDA-1209), which is currently undergoing preclinical study, was selected as a starting compound for the development of new nuclear factor erythroid 2-related factor 2 (Nrf2) activators. Based on our previous knowledge, we attempted to redesign and synthesize VEDA-1209 derivatives by introducing the pyridine ring and sulfone moiety to ameliorate its Nrf2 efficacy and drug-like properties. Among the synthesized compounds, (E)-3-chloro-2-(2-((3-methoxypyridin-2-yl)sulfonyl)vinyl) pyridine (10e) was found to have approximately 16-folds higher Nrf2 activating effects than VEDA-1209 (10e: EC50 = 37.9 nM vs VEDA-1209: EC50 = 625 nM) in functional cell-based assay. In addition, 10e effectively improved drug-like properties such as CYP inhibition probability and metabolic stability. Finally, 10e demonstrated excellent antioxidant and anti-inflammatory effects in BV-2 microglial cells and significantly restored spatial memory deficits in lipopolysaccharide (LPS)-induced neuroinflammatory mouse models.


Asunto(s)
Chalcona , Chalconas , Ratones , Animales , Antioxidantes/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Antiinflamatorios/farmacología , Sulfonas/farmacología , Chalcona/farmacología , Piridinas , Lipopolisacáridos/farmacología
3.
Microbiol Spectr ; : e0366022, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36786576

RESUMEN

The evolution of the bacterial phosphotransferase system (PTS) linked to glycolysis is dependent on the availability of naturally occurring sugars. Although bacteria exhibit sugar specificities based on carbon catabolite repression, the acquisition and evolvability of the cellular sugar preference under conditions that are suboptimal for growth (e.g., environments rich in a rare sugar) are poorly understood. Here, we generated Escherichia coli mutants via a retro-aldol reaction to obtain progeny that can utilize the rare sugar d-tagatose. We detected a minimal set of adaptive mutations in the d-fructose-specific PTS to render E. coli capable of d-tagatose utilization. These E. coli mutant strains lost the tight regulation of both the d-fructose and N-acetyl-galactosamine PTS following deletions in the binding site of the catabolite repressor/activator protein (Cra) upstream from the fruBKA operon and in the agaR gene, encoding the N-acetylgalactosamine (GalNAc) repressor, respectively. Acquired d-tagatose catabolic pathways then underwent fine-tuned adaptation via an additional mutation in 1-phosphofructose kinase to adjust metabolic fluxes. We determined the evolutionary trajectory at the molecular level, providing insights into the mechanism by which enteric bacteria evolved a substrate preference for the rare sugar d-tagatose. Furthermore, the engineered E. coli mutant strain could serve as an in vivo high-throughput screening platform for engineering non-phosphosugar isomerases to produce rare sugars. IMPORTANCE Microorganisms generate energy through glycolysis, which might have preceded a rapid burst of evolution, including the evolution of cellular respiration in the primordial biosphere. However, little is known about the evolvability of cellular sugar preferences. Here, we generated Escherichia coli mutants via a retro-aldol reaction to obtain progeny that can utilize the rare sugar d-tagatose. Consequently, we identified mutational hot spots and determined the evolutionary trajectory at the molecular level. This provided insights into the mechanism by which enteric bacteria evolved substrate preferences for various sugars, accounting for the widespread occurrence of these taxa. Furthermore, the adaptive laboratory evolution-induced cellular chassis could serve as an in vivo high-throughput screening platform for engineering tailor-made non-phosphorylated sugar isomerases to produce low-calorigenic rare sugars showing antidiabetic, antihyperglycemic, and antitumor activities.

4.
Eur J Med Chem ; 166: 65-74, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30684871

RESUMEN

Immunomodulatory drugs (IMiDs) exert anti-myeloma activity by binding to the protein cereblon (CRBN) and subsequently degrading IKZF1/3. Recently, their ability to recruit E3 ubiquitin ligase has been used in the proteolysis targeting chimera (PROTAC) technology. Herein, we design and synthesize a novel IMiD analog TD-106 that induces the degradation of IKZF1/3 and inhibits the proliferation of multiple myeloma cells in vitro as well as in vivo. Moreover, we demonstrate that TD-428, which comprises TD-106 linked to a BET inhibitor, JQ1 efficiently induce BET protein degradation in the prostate cancer cell line 22Rv1. Consequently, cell proliferation is inhibited due to suppressed C-MYC transcription. These results, therefore, firmly suggest that the newly synthesized IMiD analog, TD-106, is a novel CRBN modulator that can be used for targeted protein degradation.


Asunto(s)
Factores Inmunológicos/farmacología , Péptido Hidrolasas/metabolismo , Proteolisis/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales , Animales , Línea Celular Tumoral , Femenino , Humanos , Factores Inmunológicos/síntesis química , Factores Inmunológicos/química , Ratones , Piperidonas/síntesis química , Piperidonas/química , Piperidonas/farmacología , Ubiquitina-Proteína Ligasas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Bioorg Med Chem Lett ; 27(18): 4399-4404, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28827110

RESUMEN

A novel 6-aminopurine scaffold bearing an N9-cis-cyclobutyl moiety was designed using structure-based molecular design based on two known CDK inhibitors, dinaciclib and Cmpd-27. A series of novel 6-aminopurine compounds was prepared for structure-activity relationship (SAR) studies of CDK2 and CDK5 inhibitors. Among the compounds synthesized, compound 8l displayed potent CDK2 and CDK5 inhibitory activities with low nanomolar ranges (IC50=2.1 and 4.8nM, respectively) and showed moderate cytotoxicity in HCT116 colon cancer and MCF7 breast cancer cell lines. Here, we report the synthesis and evaluation of novel 6-aminopurine derivatives and present molecular docking models of compound 81 with CDK2 and CDK5.


Asunto(s)
Antineoplásicos/farmacología , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Purinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Quinasas Ciclina-Dependientes/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Purinas/síntesis química , Purinas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA