Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Clin Cancer Res ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39142654

RESUMEN

PURPOSE: Hypoxia mediates treatment resistance in solid tumors. We evaluated if oxygen-enhanced (OE)-MRI-derived hypoxic volume (HVMRI) is repeatable and can detect radiotherapy-induced hypoxia modification in HPV-associated oropharyngeal head and neck squamous cell cancer (HNSCC). EXPERIMENTAL DESIGN: 27 patients were recruited prospectively between March 2021 and January 2024. HVMRI was measured in primary and nodal tumors prior to standard-of-care (chemo)radiotherapy then at weeks 2 and 4 (W2, W4) into therapy. Two pre-treatment scans assessed biomarker within-subject coefficient of variation (wCV) and repeatability coefficient (RC). Cohort treatment response was measured using mixed-effects modelling. Responding lesions were identified by comparing HVMRI change to RC limits of agreement (LOA). RESULTS: OE-MRI identified hypoxia in all lesions. HVMRI wCV was 24.6% and RC LOA were -45.7% to 84.1%. Cohort median pre-treatment HVMRI of 11.3 cm3 reduced to 6.9 cm3 at W2 and 5.9 cm3 at W4 (both p < 0.001). HVMRI was reduced in 54.5% of individual lesions by W2 and in 88.2% by W4. All lesions with W2 hypoxia reduction showed persistent modification at W4. HVMRI reduced in some lesions that showed no overall volume change. Hypoxia modification was discordant between primary and nodal tumors in 50.0% of patients. CONCLUSIONS: Radiation-induced hypoxia modification can occur as early as W2, but onset varies between patients and was not necessarily associated with overall size change. Half of all patients had discordant changes in primary and nodal tumors. These findings have implications for patient selection and timing of dose de-escalation strategies in HPV-associated oropharyngeal carcinoma.

2.
NMR Biomed ; : e5239, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39183451

RESUMEN

Sensitivity analysis enables the identification of influential parameters and the optimisation of model composition. Such methods have not previously been applied systematically to models describing hyperpolarised 129Xe gas exchange in the lung. Here, we evaluate the current 129Xe gas exchange models to assess their precision for identifying alterations in pulmonary vascular function and lung microstructure. We assess sensitivity using established univariate methods and scatter plots for parameter interactions. We apply them to the model described by Patz et al and the Model of Xenon Exchange (MOXE), examining their ability to measure: i) importance (rank), ii) temporal dependence and iii) interaction effects of each parameter across healthy and diseased ranges. The univariate methods and scatter plot analyses demonstrate consistently similar results for the importance of parameters common to both models evaluated. Alveolar surface area to volume ratio is identified as the parameter to which model signals are most sensitive. The alveolar-capillary barrier thickness is identified as a low-sensitivity parameter for the MOXE model. An acquisition window of at least 200 ms effectively demonstrates model sensitivity to most parameters. Scatter plots reveal interaction effects in both models, impacting output variability and sensitivity. Our sensitivity analysis ranks the parameters within the model described by Patz et al and within the MOXE model. The MOXE model shows low sensitivity to alveolar-capillary barrier thickness, highlighting the need for designing acquisition protocols optimised for the measurement of this parameter. The presence of parameter interaction effects highlights the requirement for care in interpreting model outputs.

3.
Magn Reson Med ; 91(5): 1803-1821, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38115695

RESUMEN

PURPOSE: K trans $$ {K}^{\mathrm{trans}} $$ has often been proposed as a quantitative imaging biomarker for diagnosis, prognosis, and treatment response assessment for various tumors. None of the many software tools for K trans $$ {K}^{\mathrm{trans}} $$ quantification are standardized. The ISMRM Open Science Initiative for Perfusion Imaging-Dynamic Contrast-Enhanced (OSIPI-DCE) challenge was designed to benchmark methods to better help the efforts to standardize K trans $$ {K}^{\mathrm{trans}} $$ measurement. METHODS: A framework was created to evaluate K trans $$ {K}^{\mathrm{trans}} $$ values produced by DCE-MRI analysis pipelines to enable benchmarking. The perfusion MRI community was invited to apply their pipelines for K trans $$ {K}^{\mathrm{trans}} $$ quantification in glioblastoma from clinical and synthetic patients. Submissions were required to include the entrants' K trans $$ {K}^{\mathrm{trans}} $$ values, the applied software, and a standard operating procedure. These were evaluated using the proposed OSIP I gold $$ \mathrm{OSIP}{\mathrm{I}}_{\mathrm{gold}} $$ score defined with accuracy, repeatability, and reproducibility components. RESULTS: Across the 10 received submissions, the OSIP I gold $$ \mathrm{OSIP}{\mathrm{I}}_{\mathrm{gold}} $$ score ranged from 28% to 78% with a 59% median. The accuracy, repeatability, and reproducibility scores ranged from 0.54 to 0.92, 0.64 to 0.86, and 0.65 to 1.00, respectively (0-1 = lowest-highest). Manual arterial input function selection markedly affected the reproducibility and showed greater variability in K trans $$ {K}^{\mathrm{trans}} $$ analysis than automated methods. Furthermore, provision of a detailed standard operating procedure was critical for higher reproducibility. CONCLUSIONS: This study reports results from the OSIPI-DCE challenge and highlights the high inter-software variability within K trans $$ {K}^{\mathrm{trans}} $$ estimation, providing a framework for ongoing benchmarking against the scores presented. Through this challenge, the participating teams were ranked based on the performance of their software tools in the particular setting of this challenge. In a real-world clinical setting, many of these tools may perform differently with different benchmarking methodology.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Humanos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Programas Informáticos , Algoritmos
4.
Radiother Oncol ; 183: 109592, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36870608

RESUMEN

BACKGROUND AND PURPOSE: Tumour hypoxia is prognostic in head and neck cancer (HNC), associated with poor loco-regional control, poor survival and treatment resistance. The advent of hybrid MRI - radiotherapy linear accelerator or 'MR Linac' systems - could permit imaging for treatment adaptation based on hypoxic status. We sought to develop oxygen-enhanced MRI (OE-MRI) in HNC and translate the technique onto an MR Linac system. MATERIALS AND METHODS: MRI sequences were developed in phantoms and 15 healthy participants. Next, 14 HNC patients (with 21 primary or local nodal tumours) were evaluated. Baseline tissue longitudinal relaxation time (T1) was measured alongside the change in 1/T1 (termed ΔR1) between air and oxygen gas breathing phases. We compared results from 1.5 T diagnostic MR and MR Linac systems. RESULTS: Baseline T1 had excellent repeatability in phantoms, healthy participants and patients on both systems. Cohort nasal concha oxygen-induced ΔR1 significantly increased (p < 0.0001) in healthy participants demonstrating OE-MRI feasibility. ΔR1 repeatability coefficients (RC) were 0.023-0.040 s-1 across both MR systems. The tumour ΔR1 RC was 0.013 s-1 and the within-subject coefficient of variation (wCV) was 25% on the diagnostic MR. Tumour ΔR1 RC was 0.020 s-1 and wCV was 33% on the MR Linac. ΔR1 magnitude and time-course trends were similar on both systems. CONCLUSION: We demonstrate first-in-human translation of volumetric, dynamic OE-MRI onto an MR Linac system, yielding repeatable hypoxia biomarkers. Data were equivalent on the diagnostic MR and MR Linac systems. OE-MRI has potential to guide future clinical trials of biology guided adaptive radiotherapy.


Asunto(s)
Neoplasias de Cabeza y Cuello , Oxígeno , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Hipoxia , Pronóstico , Aceleradores de Partículas
5.
Magn Reson Imaging ; 95: 39-49, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36252693

RESUMEN

PURPOSE: To compare imaging biomarkers from hyperpolarised 129Xe ventilation MRI and dynamic oxygen-enhanced MRI (OE-MRI) with standard pulmonary function tests (PFT) in interstitial lung disease (ILD) patients. To evaluate if biomarkers can separate ILD subtypes and detect early signs of disease resolution or progression. STUDY TYPE: Prospective longitudinal. POPULATION: Forty-one ILD (fourteen idiopathic pulmonary fibrosis (IPF), eleven hypersensitivity pneumonitis (HP), eleven drug-induced ILD (DI-ILD), five connective tissue disease related-ILD (CTD-ILD)) patients and ten healthy volunteers imaged at visit 1. Thirty-four ILD patients completed visit 2 (eleven IPF, eight HP, ten DIILD, five CTD-ILD) after 6 or 26 weeks. FIELD STRENGTH/SEQUENCE: MRI was performed at 1.5 T, including inversion recovery T1 mapping, dynamic MRI acquisition with varying oxygen levels, and hyperpolarised 129Xe ventilation MRI. Subjects underwent standard spirometry and gas transfer testing. ASSESSMENT: Five 1H MRI and two 129Xe MRI ventilation metrics were compared with spirometry and gas transfer measurements. STATISTICAL TEST: To evaluate differences at visit 1 among subgroups: ANOVA or Kruskal-Wallis rank tests with correction for multiple comparisons. To assess the relationships between imaging biomarkers, PFT, age and gender, at visit 1 and for the change between visit 1 and 2: Pearson correlations and multilinear regression models. RESULTS: The global PFT tests could not distinguish ILD subtypes. Percentage ventilated volumes were lower in ILD patients than in HVs when measured with 129Xe MRI (HV 97.4 ± 2.6, CTD-ILD: 91.0 ± 4.8 p = 0.017, DI-ILD 90.1 ± 7.4 p = 0.003, HP 92.6 ± 4.0 p = 0.013, IPF 88.1 ± 6.5 p < 0.001), but not with OE-MRI. 129Xe reported more heterogeneous ventilation in DI-ILD and IPF than in HV, and OE-MRI reported more heterogeneous ventilation in DI-ILD and IPF than in HP or CTD-ILD. The longitudinal changes reported by the imaging biomarkers did not correlate with the PFT changes between visits. DATA CONCLUSION: Neither 129Xe ventilation nor OE-MRI biomarkers investigated in this study were able to differentiate between ILD subtypes, suggesting that ventilation-only biomarkers are not indicated for this task. Limited but progressive loss of ventilated volume as measured by 129Xe-MRI may be present as the biomarker of focal disease progresses. OE-MRI biomarkers are feasible in ILD patients and do not correlate strongly with PFT. Both OE-MRI and 129Xe MRI revealed more spatially heterogeneous ventilation in DI-ILD and IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Humanos , Oxígeno , Estudios Prospectivos , Enfermedades Pulmonares Intersticiales/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/diagnóstico , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Biomarcadores
6.
Magn Reson Med ; 86(4): 1829-1844, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33973674

RESUMEN

PURPOSE: We introduce a novel, generalized tracer kinetic model selection framework to quantify microvascular characteristics of liver and tumor tissue in gadoxetate-enhanced dynamic contrast-enhanced MRI (DCE-MRI). METHODS: Our framework includes a hierarchy of nested models, from which physiological parameters are derived in 2 regimes, corresponding to the active transport and free diffusion of gadoxetate. We use simulations to show the sensitivity of model selection and parameter estimation to temporal resolution, time-series duration, and noise. We apply the framework in 8 healthy volunteers (time-series duration up to 24 minutes) and 10 patients with hepatocellular carcinoma (6 minutes). RESULTS: The active transport regime is preferred in 98.6% of voxels in volunteers, 82.1% of patients' non-tumorous liver, and 32.2% of tumor voxels. Interpatient variations correspond to known co-morbidities. Simulations suggest both datasets have sufficient temporal resolution and signal-to-noise ratio, while patient data would be improved by using a time-series duration of at least 12 minutes. CONCLUSIONS: In patient data, gadoxetate exhibits different kinetics: (a) between liver and tumor regions and (b) within regions due to liver disease and/or tumor heterogeneity. Our generalized framework selects a physiological interpretation at each voxel, without preselecting a model for each region or duplicating time-consuming optimizations for models with identical functional forms.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagen , Medios de Contraste , Gadolinio DTPA , Humanos , Hígado/diagnóstico por imagen , Neoplasias Hepáticas/diagnóstico por imagen , Imagen por Resonancia Magnética
7.
BMC Cancer ; 21(1): 354, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33794823

RESUMEN

BACKGROUND: Patients with metastatic colorectal cancer are treated with cytotoxic chemotherapy supplemented by molecularly targeted therapies. There is a critical need to define biomarkers that can optimise the use of these therapies to maximise efficacy and avoid unnecessary toxicity. However, it is important to first define the changes in potential biomarkers following cytotoxic chemotherapy alone. This study reports the impact of standard cytotoxic chemotherapy across a range of circulating and imaging biomarkers. METHODS: A single-centre, prospective, biomarker-driven study. Eligible patients included those diagnosed with colorectal cancer with liver metastases that were planned to receive first line oxaliplatin plus 5-fluorouracil or capecitabine. Patients underwent paired blood sampling and magnetic resonance imaging (MRI), and biomarkers were associated with progression-free survival (PFS) and overall survival (OS). RESULTS: Twenty patients were recruited to the study. Data showed that chemotherapy significantly reduced the number of circulating tumour cells as well as the circulating concentrations of Ang1, Ang2, VEGF-A, VEGF-C and VEGF-D from pre-treatment to cycle 2 day 2. The changes in circulating concentrations were not associated with PFS or OS. On average, the MRI perfusion/permeability parameter, Ktrans, increased in response to cytotoxic chemotherapy from pre-treatment to cycle 2 day 2 and this increase was associated with worse OS (HR 1.099, 95%CI 1.01-1.20, p = 0.025). CONCLUSIONS: In patients diagnosed with colorectal cancer with liver metastases, treatment with standard chemotherapy changes cell- and protein-based biomarkers, although these changes are not associated with survival outcomes. In contrast, the imaging biomarker, Ktrans, offers promise to direct molecularly targeted therapies such as anti-angiogenic agents.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Capecitabina/uso terapéutico , Fluorouracilo/uso terapéutico , Oxaliplatino/uso terapéutico , Anciano , Capecitabina/farmacología , Femenino , Fluorouracilo/farmacología , Humanos , Masculino , Metástasis de la Neoplasia , Oxaliplatino/farmacología , Estudios Prospectivos
8.
Cancers (Basel) ; 13(2)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440685

RESUMEN

Imaging biomarkers require technical, biological, and clinical validation to be translated into robust tools in research or clinical settings. This study contributes to the technical validation of radiomic features from magnetic resonance imaging (MRI) by evaluating the repeatability of features from four MR sequences: pre-contrast T1- and T2-weighted images, pre-contrast quantitative T1 maps (qT1), and contrast-enhanced T1-weighted images. Fifty-one patients with colorectal cancer liver metastases were scanned twice, up to 7 days apart. Repeatability was quantified using the intraclass correlation coefficient (ICC) and repeatability coefficient (RC), and the impact of non-Gaussian feature distributions and image normalisation was evaluated. Most radiomic features had non-Gaussian distributions, but Box-Cox transformations enabled ICCs and RCs to be calculated appropriately for an average of 97% of features across sequences. ICCs ranged from 0.30 to 0.99, with volume and other shape features tending to be most repeatable; volume ICC > 0.98 for all sequences. 19% of features from non-normalised images exhibited significantly different ICCs in pair-wise sequence comparisons. Normalisation tended to increase ICCs for pre-contrast T1- and T2-weighted images, and decrease ICCs for qT1 maps. RCs tended to vary more between sequences than ICCs, showing that evaluations of feature performance depend on the chosen metric. This work suggests that feature-specific repeatability, from specific combinations of MR sequence and pre-processing steps, should be evaluated to select robust radiomic features as biomarkers in specific studies. In addition, as different repeatability metrics can provide different insights into a specific feature, consideration of the appropriate metric should be taken in a study-specific context.

9.
Clin Cancer Res ; 25(13): 3818-3829, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31053599

RESUMEN

PURPOSE: Hypoxia is associated with poor prognosis and is predictive of poor response to cancer treatments, including radiotherapy. Developing noninvasive biomarkers that both detect hypoxia prior to treatment and track change in tumor hypoxia following treatment is required urgently. EXPERIMENTAL DESIGN: We evaluated the ability of oxygen-enhanced MRI (OE-MRI) to map and quantify therapy-induced changes in tumor hypoxia by measuring oxygen-refractory signals in perfused tissue (perfused Oxy-R). Clinical first-in-human study in patients with non-small cell lung cancer (NSCLC) was performed alongside preclinical experiments in two xenograft tumors (Calu6 NSCLC model and U87 glioma model). RESULTS: MRI perfused Oxy-R tumor fraction measurement of hypoxia was validated with ex vivo tissue pathology in both xenograft models. Calu6 and U87 experiments showed that MRI perfused Oxy-R tumor volume was reduced relative to control following single fraction 10-Gy radiation and fractionated chemoradiotherapy (P < 0.001) due to both improved perfusion and reduced oxygen consumption rate. Next, evaluation of 23 patients with NSCLC showed that OE-MRI was clinically feasible and that tumor perfused Oxy-R volume is repeatable [interclass correlation coefficient: 0.961 (95% CI, 0.858-0.990); coefficient of variation: 25.880%]. Group-wise perfused Oxy-R volume was reduced at 14 days following start of radiotherapy (P = 0.015). OE-MRI detected between-subject variation in hypoxia modification in both xenograft and patient tumors. CONCLUSIONS: These findings support applying OE-MRI biomarkers to monitor hypoxia modification, to stratify patients in clinical trials of hypoxia-modifying therapies, to identify patients with hypoxic tumors that may fail treatment with immunotherapy, and to guide adaptive radiotherapy by mapping regional hypoxia.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Hipoxia/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/metabolismo , Imagen por Resonancia Magnética , Oxígeno/metabolismo , Animales , Biomarcadores , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Aumento de la Imagen , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Ratones , Medicina de Precisión/métodos , Medicina de Precisión/normas , Flujo Sanguíneo Regional , Reproducibilidad de los Resultados , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Mater Sci Eng C Mater Biol Appl ; 101: 217-227, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31029314

RESUMEN

Diffusion magnetic resonance imaging (dMRI) is considered as a useful tool to study solid tumours. However, the interpretation of dMRI signal and validation of quantitative measurements of is challenging. One way to address these challenges is by using a standard reference material that can mimic tumour cell microstructure. There is a growing interest in using hollow polymeric microspheres, mainly prepared by multiple steps, as mimics of cells in healthy and diseased tissue. The present work reports on tumour cell-mimicking materials composed of hollow microspheres for application as a standard material in dMRI. These microspheres were prepared via one-step co-electrospraying process. The shell material was poly(d,l-lactic-co-glycolic acid) (PLGA) polymers with different molecule weights and/or ratios of glycolic acid-to-lactic, while the core was polyethylene glycol (PEG) or ethylene glycol. The resultant co-electrosprayed products were characterised by optical microscopy, scanning electron microscopy (SEM) and synchrotron X-ray micro-CT. These products were found to have variable structures and morphologies, e.g. from spherical particles with/without surface hole, through beaded fibres to smooth fibres, which mainly depend on PLGA composition and core materials. Only the shell material of PLGA polymer with ester terminated, Mw 50,000-75,000 g mol-1, and lactide:glycolide 85:15 formed hollow microspheres via the co-electrospraying process using the core material of 8 wt% PEG/chloroform as the core. A water-filled test object (or phantom) was designed and constructed from samples of the material generated from co-electrosprayed PLGA microspheres and tested on a 7 T MRI scanner. The preliminary MRI results provide evidence that hollow PLGA microspheres can restrict/hinder water diffusion as cells do in tumour tissue, implying that the phantom may be suitable for use as a quantitative validation and calibration tool for dMRI.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Electroquímica/métodos , Microesferas , Polímeros/química , Línea Celular Tumoral , Humanos , Polietilenglicoles/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Sincrotrones , Tomografía Computarizada por Rayos X
11.
J Magn Reson Imaging ; 50(4): 1278-1284, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30859655

RESUMEN

BACKGROUND: Sodium MRI (23 Na-MRI)-derived biomarkers such as total sodium concentration (TSC) have the potential to provide information on tumor cellularity and the changes in tumor microstructure that occur following therapy. PURPOSE: To evaluate the repeatability and reproducibility of TSC measurements in the brains of healthy volunteers, providing evidence for the technical validation of 23 Na-MRI-derived biomarkers. STUDY TYPE: Prospective multicenter study. SUBJECTS: Eleven volunteers (32 ± 6 years; eight males, three females) were scanned twice at each of two sites. FIELD STRENGTH/SEQUENCE: Comparable 3D-cones 23 Na-MRI ultrashort echo time acquisitions at 3T. ASSESSMENT: TSC values, quantified from calibration phantoms placed in the field of view, were obtained from white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), based on automated segmentation of coregistered 1 H T1 -weighted images and hand-drawn regions of interest by two readers. STATISTICAL TESTS: Coefficients of variation (CoVs) from mean TSC values were used to assess intrasite repeatability and intersite reproducibility. RESULTS: Mean GM TSC concentrations (52.1 ± 7.1 mM) were ∼20% higher than for WM (41.8 ± 6.7 mM). Measurements were highly repeatable at both sites with mean scan-rescan CoVs between volunteers and regions of 2% and 4%, respectively. Mean intersite reproducibility CoVs were 3%, 3%, and 6% for WM, GM, and CSF, respectively. DATA CONCLUSION: These results demonstrate technical validation of sodium MRI-derived biomarkers in healthy volunteers. We also show that comparable 23 Na imaging of the brain can be implemented across different sites and scanners with excellent repeatability and reproducibility. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1278-1284.


Asunto(s)
Sustancia Gris/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Isótopos de Sodio , Sodio/metabolismo , Sustancia Blanca/metabolismo , Adulto , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Estudios Prospectivos , Valores de Referencia , Reproducibilidad de los Resultados , Sodio/líquido cefalorraquídeo
12.
Cortex ; 113: 1-14, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30557759

RESUMEN

In neurosurgery there are several situations that require transgression of the temporal cortex. For example, a subset of patients with temporal lobe epilepsy require surgical resection (most typically, en-bloc anterior temporal lobectomy). This procedure is the gold standard to alleviate seizures but is associated with chronic cognitive deficits. In recent years there have been multiple attempts to find the optimum balance between minimising the size of resection in order to preserve cognitive function, while still ensuring seizure freedom. Some attempts involve reducing the distance that the resection stretches back from the temporal pole, whilst others try to preserve one or more of the temporal gyri. More recent advanced surgical techniques (selective amygdalo-hippocamptectomies) try to remove the least amount of tissue by going under (sub-temporal), over (trans-Sylvian) or through the temporal lobe (middle-temporal), which have been related to better cognitive outcomes. Previous comparisons of these surgical techniques focus on comparing seizure freedom or behaviour post-surgery, however there have been no systematic studies showing the effect of surgery on white matter connectivity. The main aim of this study, therefore, was to perform systematic 'pseudo-neurosurgery' based on existing resection methods on healthy neuroimaging data and measuring the effect on long-range connectivity. We use anatomical connectivity maps (ACM) to determine long-range disconnection, which is complementary to existing measures of local integrity such as fractional anisotropy or mean diffusivity. ACMs were generated for each diffusion scan in order to compare whole-brain connectivity with an 'ideal resection', nine anterior temporal lobectomy and three selective approaches. For en-bloc resections, as distance from the temporal pole increased, reduction in connectivity was evident within the arcuate fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, and the uncinate fasciculus. Increasing the height of resections dorsally reduced connectivity within the uncinate fasciculus. Sub-temporal amygdalohippocampectomy resections were associated with connectivity patterns most similar to the 'ideal' baseline resection, compared to trans-Sylvian and middle-temporal approaches. In conclusion, we showed the utility of ACM in assessing long-range disconnections/disruptions during temporal lobe resections, where we identified the sub-temporal resection as the least disruptive to long-range connectivity which may explain its better cognitive outcome. These results have a direct impact on understanding the amount and/or type of cognitive deficit post-surgery, which may not be obtainable using local measures of white matter integrity.


Asunto(s)
Encéfalo/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Encéfalo/cirugía , Mapeo Encefálico , Imagen de Difusión por Resonancia Magnética , Epilepsia del Lóbulo Temporal/cirugía , Humanos , Red Nerviosa/cirugía , Procedimientos Neuroquirúrgicos , Sustancia Blanca/cirugía
13.
Nat Commun ; 9(1): 4672, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30405103

RESUMEN

Oncological use of anti-angiogenic VEGF inhibitors has been limited by the lack of informative biomarkers. Previously we reported circulating Tie2 as a vascular response biomarker for bevacizumab-treated ovarian cancer patients. Using advanced MRI and circulating biomarkers we have extended these findings in metastatic colorectal cancer (n = 70). Bevacizumab (10 mg/kg) was administered to elicit a biomarker response, followed by FOLFOX6-bevacizumab until disease progression. Bevacizumab induced a correlation between Tie2 and the tumor vascular imaging biomarker, Ktrans (R:-0.21 to 0.47) implying that Tie2 originated from the tumor vasculature. Tie2 trajectories were independently associated with pre-treatment tumor vascular characteristics, tumor response, progression free survival (HR for progression = 3.01, p = 0.00014; median PFS 248 vs. 348 days p = 0.0008) and the modeling of progressive disease (p < 0.0001), suggesting that Tie2 should be monitored clinically to optimize VEGF inhibitor use. A vascular response is defined as a 30% reduction in Tie2; vascular progression as a 40% increase in Tie2 above the nadir. Tie2 is the first, validated, tumor vascular response biomarker for VEGFi.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Biomarcadores de Tumor/sangre , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/secundario , Receptor TIE-2/sangre , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Adulto , Anciano , Angiopoyetina 2/metabolismo , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Neoplasias Colorrectales/irrigación sanguínea , Neoplasias Colorrectales/tratamiento farmacológico , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Modelos Biológicos , Neovascularización Patológica/sangre , Pronóstico , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
Radiology ; 288(3): 739-747, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29869970

RESUMEN

Purpose To cross-validate T1-weighted oxygen-enhanced (OE) MRI measurements of tumor hypoxia with intrinsic susceptibility MRI measurements and to demonstrate the feasibility of translation of the technique for patients. Materials and Methods Preclinical studies in nine 786-0-R renal cell carcinoma (RCC) xenografts and prospective clinical studies in eight patients with RCC were performed. Longitudinal relaxation rate changes (∆R1) after 100% oxygen inhalation were quantified, reflecting the paramagnetic effect on tissue protons because of the presence of molecular oxygen. Native transverse relaxation rate (R2*) and oxygen-induced R2* change (∆R2*) were measured, reflecting presence of deoxygenated hemoglobin molecules. Median and voxel-wise values of ∆R1 were compared with values of R2* and ∆R2*. Tumor regions with dynamic contrast agent-enhanced MRI perfusion, refractory to signal change at OE MRI (referred to as perfused Oxy-R), were distinguished from perfused oxygen-enhancing (perfused Oxy-E) and nonperfused regions. R2* and ∆R2* values in each tumor subregion were compared by using one-way analysis of variance. Results Tumor-wise and voxel-wise ∆R1 and ∆R2* comparisons did not show correlative relationships. In xenografts, parcellation analysis revealed that perfused Oxy-R regions had faster native R2* (102.4 sec-1 vs 81.7 sec-1) and greater negative ∆R2* (-22.9 sec-1 vs -5.4 sec-1), compared with perfused Oxy-E and nonperfused subregions (all P < .001), respectively. Similar findings were present in human tumors (P < .001). Further, perfused Oxy-R helped identify tumor hypoxia, measured at pathologic analysis, in both xenografts (P = .002) and human tumors (P = .003). Conclusion Intrinsic susceptibility biomarkers provide cross validation of the OE MRI biomarker perfused Oxy-R. Consistent relationship to pathologic analyses was found in xenografts and human tumors, demonstrating biomarker translation. Published under a CC BY 4.0 license. Online supplemental material is available for this article.


Asunto(s)
Carcinoma de Células Renales/fisiopatología , Hipoxia/fisiopatología , Aumento de la Imagen/métodos , Neoplasias Renales/fisiopatología , Imagen por Resonancia Magnética/métodos , Adulto , Anciano , Animales , Biomarcadores , Carcinoma de Células Renales/complicaciones , Carcinoma de Células Renales/diagnóstico por imagen , Modelos Animales de Enfermedad , Estudios de Factibilidad , Femenino , Humanos , Hipoxia/complicaciones , Hipoxia/diagnóstico por imagen , Riñón/diagnóstico por imagen , Riñón/patología , Riñón/fisiopatología , Neoplasias Renales/complicaciones , Neoplasias Renales/diagnóstico por imagen , Masculino , Ratones , Persona de Mediana Edad , Oxígeno , Estudios Prospectivos , Reproducibilidad de los Resultados
15.
J Neuroimaging ; 28(2): 158-161, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29064155

RESUMEN

BACKGROUND AND PURPOSE: Studies in animal models suggest that inflammation is a major contributor to secondary injury after intracerebral hemorrhage (ICH). Direct, noninvasive monitoring of inflammation in the human brain after ICH will facilitate early-phase development of anti-inflammatory treatments. We sought to investigate the feasibility of multimodality brain imaging in subacute ICH. METHODS: Acute ICH patients were recruited to undergo multiparametric MRI (including dynamic contrast-enhanced measurement of blood-brain barrier transfer constant (Ktrans ) and PET with [11 C]-(R)-PK11195). [11 C]-(R)-PK11195 binds to the translocator protein 18 kDa (TSPO), which is rapidly upregulated in activated microglia. Circulating inflammatory markers were measured at the time of PET. RESULTS: Five patients were recruited to this feasibility study with imaging between 5 and 16 days after onset. Etiologies included hypertension-related small vessel disease, cerebral amyloid angiopathy (CAA), cavernoma, and arteriovenous malformation (AVM). [11 C]-(R)-PK11195 binding was low in all hematomas and 2 (patient 2 [probable CAA] and 4 [AVM]) cases showed widespread increase in binding in the perihematomal region versus contralateral. All had increased Ktrans in the perihematomal region (mean difference = 2.2 × 10-3 minute-1 ; SD = 1.6 × 10-3 minute-1 ) versus contralateral. Two cases (patients 1 [cavernoma] and 4 [AVM]) had delayed surgery (3 and 12 months post-onset, respectively) with biopsies showing intense microglial activation in perilesional tissue. CONCLUSIONS: Our study demonstrates for the first time the feasibility of performing complex multimodality brain imaging for noninvasive monitoring of neuroinflammation for this severe stroke subtype.


Asunto(s)
Encéfalo/diagnóstico por imagen , Angiopatía Amiloide Cerebral/diagnóstico por imagen , Hemorragia Cerebral/diagnóstico por imagen , Hipertensión/diagnóstico por imagen , Malformaciones Arteriovenosas Intracraneales/diagnóstico por imagen , Adulto , Anciano de 80 o más Años , Encéfalo/patología , Angiopatía Amiloide Cerebral/complicaciones , Angiopatía Amiloide Cerebral/patología , Hemorragia Cerebral/etiología , Hemorragia Cerebral/patología , Femenino , Humanos , Hipertensión/complicaciones , Hipertensión/patología , Inflamación , Malformaciones Arteriovenosas Intracraneales/complicaciones , Malformaciones Arteriovenosas Intracraneales/patología , Isoquinolinas , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Imagen Multimodal
16.
Magn Reson Med ; 79(4): 2236-2245, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28856728

RESUMEN

PURPOSE: Previous work has shown that combining dynamic contrast-enhanced (DCE)-MRI and oxygen-enhanced (OE)-MRI binary enhancement maps can identify tumor hypoxia. The current work proposes a novel, data-driven method for mapping tissue oxygenation and perfusion heterogeneity, based on clustering DCE/OE-MRI data. METHODS: DCE-MRI and OE-MRI were performed on nine U87 (glioblastoma) and seven Calu6 (non-small cell lung cancer) murine xenograft tumors. Area under the curve and principal component analysis features were calculated and clustered separately using Gaussian mixture modelling. Evaluation metrics were calculated to determine the optimum feature set and cluster number. Outputs were quantitatively compared with a previous non data-driven approach. RESULTS: The optimum method located six robustly identifiable clusters in the data, yielding tumor region maps with spatially contiguous regions in a rim-core structure, suggesting a biological basis. Mean within-cluster enhancement curves showed physiologically distinct, intuitive kinetics of enhancement. Regions of DCE/OE-MRI enhancement mismatch were located, and voxel categorization agreed well with the previous non data-driven approach (Cohen's kappa = 0.61, proportional agreement = 0.75). CONCLUSION: The proposed method locates similar regions to the previous published method of binarization of DCE/OE-MRI enhancement, but renders a finer segmentation of intra-tumoral oxygenation and perfusion. This could aid in understanding the tumor microenvironment and its heterogeneity. Magn Reson Med 79:2236-2245, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Hipoxia Tumoral , Microambiente Tumoral , Algoritmos , Animales , Área Bajo la Curva , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Análisis por Conglomerados , Glioblastoma/diagnóstico por imagen , Humanos , Hipoxia , Interpretación de Imagen Asistida por Computador , Procesamiento de Imagen Asistido por Computador , Neoplasias Pulmonares/diagnóstico por imagen , Ratones , Trasplante de Neoplasias , Distribución Normal , Oxígeno/metabolismo , Perfusión , Análisis de Componente Principal , Reproducibilidad de los Resultados , Programas Informáticos
17.
Aerosol Sci Technol ; 50(11): 1201-1215, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27928195

RESUMEN

The ability to reproducibly produce and effectively collect electrosprayed polymeric microspheres with controlled morphology and size in bulk form is challenging. In this study, microparticles were produced by electrospraying polycaprolactone (PCL) of various molecular weights and solution concentrations in chloroform, and by collecting materials on different substrates. The resultant PCL microparticles were characterized by optical and electron microscopy to investigate the effect of molecular weight, solution concentration, applied voltage, working distance, and flow rate on their morphology and size. The work demonstrates the key role of a moderate molecular weight and/or solution concentration in the formation of spherical PCL particles via an electrospraying process. Increasing the applied voltage was found to produce smaller and more uniform PCL microparticles. There was a relatively low increase in the particle average size with an increase in the working distance and flow rate. Four types of substrates were adopted to collect electrosprayed PCL particles: a glass slide, aluminium foil, liquid bath, and copper wire. Unlike 2D bulk structures collected on the other substrates, a 3D tubular structure of microspheres was formed on the copper wire which could find application in the construction of 3D tumor mimics.

18.
Cancer Res ; 76(4): 787-95, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26659574

RESUMEN

There is a clinical need for noninvasive biomarkers of tumor hypoxia for prognostic and predictive studies, radiotherapy planning, and therapy monitoring. Oxygen-enhanced MRI (OE-MRI) is an emerging imaging technique for quantifying the spatial distribution and extent of tumor oxygen delivery in vivo. In OE-MRI, the longitudinal relaxation rate of protons (ΔR1) changes in proportion to the concentration of molecular oxygen dissolved in plasma or interstitial tissue fluid. Therefore, well-oxygenated tissues show positive ΔR1. We hypothesized that the fraction of tumor tissue refractory to oxygen challenge (lack of positive ΔR1, termed "Oxy-R fraction") would be a robust biomarker of hypoxia in models with varying vascular and hypoxic features. Here, we demonstrate that OE-MRI signals are accurate, precise, and sensitive to changes in tumor pO2 in highly vascular 786-0 renal cancer xenografts. Furthermore, we show that Oxy-R fraction can quantify the hypoxic fraction in multiple models with differing hypoxic and vascular phenotypes, when used in combination with measurements of tumor perfusion. Finally, Oxy-R fraction can detect dynamic changes in hypoxia induced by the vasomodulator agent hydralazine. In contrast, more conventional biomarkers of hypoxia (derived from blood oxygenation-level dependent MRI and dynamic contrast-enhanced MRI) did not relate to tumor hypoxia consistently. Our results show that the Oxy-R fraction accurately quantifies tumor hypoxia noninvasively and is immediately translatable to the clinic.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Neoplasias/diagnóstico por imagen , Oxígeno/química , Hipoxia de la Célula , Humanos , Pronóstico , Radiografía
19.
Mater Charact ; 109: 25-35, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26702249

RESUMEN

The development of co-electrospun (co-ES) hollow microfibrous assemblies of an appreciable thickness is critical for many practical applications, including filtration membranes and tissue-mimicking scaffolds. In this study, thick uniaxially aligned hollow microfibrous assemblies forming fiber bundles and strips were prepared by co-ES of polycaprolactone (PCL) and polyethylene oxide (PEO) as shell and core materials, respectively. Hollow microfiber bundles were deposited on a fixed rotating disc, which resulted in non-controllable cross-sectional shapes on a macroscopic scale. In comparison, fiber strips were produced with tuneable thickness and width by additionally employing an x-y translation stage in co-ES. Scanning electron microscopy (SEM) images of cross-sections of fiber assemblies were analyzed to investigate the effects of production time (from 0.5 h to 12 h), core flow rate (from 0.8 mL/h to 2.0 mL/h) and/or translation speed (from 0.2 mm/s to 5 mm/s) on the pores and porosity. We observed significant changes in pore size and shape with core flow rate but the influence of production time varied; five strips produced under the same conditions had reasonably good size and porosity reproducibility; pore sizes didn't vary significantly from strip bottom to surface, although the porosity gradually decreased and then returned to the initial level.

20.
Clin Cancer Res ; 21(2): 249-57, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25421725

RESUMEN

Tumors exhibit genomic and phenotypic heterogeneity, which has prognostic significance and may influence response to therapy. Imaging can quantify the spatial variation in architecture and function of individual tumors through quantifying basic biophysical parameters such as CT density or MRI signal relaxation rate; through measurements of blood flow, hypoxia, metabolism, cell death, and other phenotypic features; and through mapping the spatial distribution of biochemical pathways and cell signaling networks using PET, MRI, and other emerging molecular imaging techniques. These methods can establish whether one tumor is more or less heterogeneous than another and can identify subregions with differing biology. In this article, we review the image analysis methods currently used to quantify spatial heterogeneity within tumors. We discuss how analysis of intratumor heterogeneity can provide benefit over more simple biomarkers such as tumor size and average function. We consider how imaging methods can be integrated with genomic and pathology data, instead of being developed in isolation. Finally, we identify the challenges that must be overcome before measurements of intratumoral heterogeneity can be used routinely to guide patient care.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Neoplasias/patología , Animales , Diagnóstico por Imagen , Heterogeneidad Genética , Humanos , Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA