Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Diabetes ; 73(7): 1188-1195, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38394643

RESUMEN

Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease. Because many genes associate with DKD, multiomics approaches were used to narrow the list of functional genes, gene products, and related pathways providing insights into the pathophysiological mechanisms of DKD. The Kidney Precision Medicine Project human kidney single-cell RNA-sequencing (scRNA-seq) data set and Mendeley Data on human kidney cortex biopsy proteomics were used. The R package Seurat was used to analyze scRNA-seq data and data from a subset of proximal tubule cells. PathfindR was applied for pathway analysis in cell type-specific differentially expressed genes and the R limma package was used to analyze differential protein expression in kidney cortex. A total of 790 differentially expressed genes were identified in proximal tubule cells, including 530 upregulated and 260 downregulated transcripts. Compared with differentially expressed proteins, 24 genes or proteins were in common. An integrated analysis combining protein quantitative trait loci, genome-wide association study hits (namely, estimated glomerular filtration rate), and a plasma metabolomics analysis was performed using baseline metabolites predictive of DKD progression in our longitudinal Diabetes Heart Study samples. The aldo-keto reductase family 1 member A1 gene (AKR1A1) was revealed as a potential molecular hub for DKD cellular dysfunction in several cross-linked pathways featured by deficiency of this enzyme.


Asunto(s)
Aldehído Reductasa , Biomarcadores , Nefropatías Diabéticas , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Humanos , Biomarcadores/metabolismo , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Proteómica/métodos , Estudio de Asociación del Genoma Completo , Masculino , Túbulos Renales Proximales/metabolismo , Femenino , Persona de Mediana Edad , Multiómica
2.
Front Oncol ; 12: 946320, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686772

RESUMEN

Redox metabolism is increasingly investigated in cancer as driving regulator of tumor progression, response to therapies and long-term patients' quality of life. Well-established cancer therapies, such as radiotherapy, either directly impact redox metabolism or have redox-dependent mechanisms of action defining their clinical efficacy. However, the ability to integrate redox information across signaling and metabolic networks to facilitate discovery and broader investigation of redox-regulated pathways in cancer remains a key unmet need limiting the advancement of new cancer therapies. To overcome this challenge, we developed a new constraint-based computational method (COSMro) and applied it to a Head and Neck Squamous Cell Cancer (HNSCC) model of radiation resistance. This novel integrative approach identified enhanced capacity for H2S production in radiation resistant cells and extracted a key relationship between intracellular redox state and cholesterol metabolism; experimental validation of this relationship highlights the importance of redox state in cellular metabolism and response to radiation.

3.
Front Cardiovasc Med ; 8: 777098, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34957260

RESUMEN

Macrophages play a central role in the pathogenesis of atherosclerosis. Our previous study demonstrated that solute carrier family 37 member 2 (SLC37A2), an endoplasmic reticulum-anchored phosphate-linked glucose-6-phosphate transporter, negatively regulates macrophage Toll-like receptor activation by fine-tuning glycolytic reprogramming in vitro. Whether macrophage SLC37A2 impacts in vivo macrophage inflammation and atherosclerosis under hyperlipidemic conditions is unknown. We generated hematopoietic cell-specific SLC37A2 knockout and control mice in C57Bl/6 Ldlr-/- background by bone marrow transplantation. Hematopoietic cell-specific SLC37A2 deletion in Ldlr-/- mice increased plasma lipid concentrations after 12-16 wks of Western diet induction, attenuated macrophage anti-inflammatory responses, and resulted in more atherosclerosis compared to Ldlr-/- mice transplanted with wild type bone marrow. Aortic root intimal area was inversely correlated with plasma IL-10 levels, but not total cholesterol concentrations, suggesting inflammation but not plasma cholesterol was responsible for increased atherosclerosis in bone marrow SLC37A2-deficient mice. Our in vitro study demonstrated that SLC37A2 deficiency impaired IL-4-induced macrophage activation, independently of glycolysis or mitochondrial respiration. Importantly, SLC37A2 deficiency impaired apoptotic cell-induced glycolysis, subsequently attenuating IL-10 production. Our study suggests that SLC37A2 expression is required to support alternative macrophage activation in vitro and in vivo. In vivo disruption of hematopoietic SLC37A2 accelerates atherosclerosis under hyperlipidemic pro-atherogenic conditions.

4.
Biomolecules ; 10(10)2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-33007922

RESUMEN

Prostate cancer (PCa) is the most common male cancer and the second leading cause of cancer death in United States men. Controversy continues over the effectiveness of prostate-specific antigen (PSA) for distinguishing aggressive from indolent PCa. There is a critical need for more specific and sensitive biomarkers to detect and distinguish low- versus high-risk PCa cases. Discovery metabolomics were performed utilizing ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) on plasma samples from 159 men with treatment naïve prostate cancer participating in the North Carolina-Louisiana PCa Project to determine if there were metabolites associated with aggressive PCa. Thirty-five identifiable plasma small molecules were associated with PCa aggressiveness, 15 of which were sphingolipids; nine common molecules were present in both African-American and European-American men. The molecules most associated with PCa aggressiveness were glycosphingolipids; levels of trihexosylceramide and tetrahexosylceramide were most closely associated with high-aggressive PCa. The Cancer Genome Atlas was queried to determine gene alterations within glycosphingolipid metabolism that are associated with PCa and other cancers. Genes that encode enzymes associated with the metabolism of glycosphingolipids were altered in 12% of PCa and >30% of lung, uterine, and ovarian cancers. These data suggest that the identified plasma (glyco)sphingolipids should be further validated for their association with aggressive PCa, suggesting that specific sphingolipids may be included in a diagnostic signature for PCa.


Asunto(s)
Biomarcadores de Tumor/sangre , Glicoesfingolípidos/sangre , Metabolómica , Neoplasias de la Próstata/sangre , Negro o Afroamericano , Anciano , Ceramidas/sangre , Humanos , Lipidómica/métodos , Masculino , Persona de Mediana Edad , Próstata/metabolismo , Próstata/patología , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Espectrometría de Masas en Tándem , Población Blanca/genética
5.
Mol Cell ; 80(2): 263-278.e7, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33022274

RESUMEN

Cancer metastasis accounts for the major cause of cancer-related deaths. How disseminated cancer cells cope with hostile microenvironments in secondary site for full-blown metastasis is largely unknown. Here, we show that AMPK (AMP-activated protein kinase), activated in mouse metastasis models, drives pyruvate dehydrogenase complex (PDHc) activation to maintain TCA cycle (tricarboxylic acid cycle) and promotes cancer metastasis by adapting cancer cells to metabolic and oxidative stresses. This AMPK-PDHc axis is activated in advanced breast cancer and predicts poor metastasis-free survival. Mechanistically, AMPK localizes in the mitochondrial matrix and phosphorylates the catalytic alpha subunit of PDHc (PDHA) on two residues S295 and S314, which activates the enzymatic activity of PDHc and alleviates an inhibitory phosphorylation by PDHKs, respectively. Importantly, these phosphorylation events mediate PDHc function in cancer metastasis. Our study reveals that AMPK-mediated PDHA phosphorylation drives PDHc activation and TCA cycle to empower cancer cells adaptation to metastatic microenvironments for metastasis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Ciclo del Ácido Cítrico , Complejo Piruvato Deshidrogenasa/metabolismo , Animales , Dominio Catalítico , Línea Celular Tumoral , Supervivencia Celular , Activación Enzimática , Femenino , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Fosforilación , Fosfoserina/metabolismo , Transducción de Señal , Estrés Fisiológico , Análisis de Supervivencia
6.
J Lipid Res ; 61(7): 1075-1086, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32430316

RESUMEN

The glycerol phosphate pathway produces more than 90% of the liver triacylglycerol (TAG). LysoPA, an intermediate in this pathway, is produced by glycerol-3-phosphate acyltransferase. Glycerophosphodiester phosphodiesterase domain containing 3 (GDPD3), whose gene was recently cloned, contains lysophospholipase D activity, which produces LysoPA from lysophospholipids. Whether human GDPD3 plays a role in hepatic TAG homeostasis is unknown. We hypothesized that human GDPD3 increases LysoPA production and availability in the glycerol phosphate pathway, promoting TAG biosynthesis. To test our hypothesis, we infected C57BL/6J mice with adeno-associated virus encoding a hepatocyte-specific albumin promoter that drives GFP (control) or FLAG-tagged human GDPD3 overexpression and fed the mice chow or a Western diet to induce hepatosteatosis. Hepatic human GDPD3 overexpression induced LysoPA production and increased FA uptake and incorporation into TAG in mouse hepatocytes and livers, ultimately exacerbating Western diet-induced liver steatosis. Our results also showed that individuals with hepatic steatosis have increased GDPD3 mRNA levels compared with individuals without steatosis. Collectively, these findings indicate that upregulation of GDPD3 expression may play a key role in hepatic TAG accumulation and may represent a molecular target for managing hepatic steatosis.


Asunto(s)
Ácidos Grasos/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado/metabolismo , Lisofosfolípidos/biosíntesis , Hidrolasas Diéster Fosfóricas/genética , Animales , Transporte Biológico/genética , Expresión Génica , Humanos , Ratones
7.
Arterioscler Thromb Vasc Biol ; 39(9): 1747-1761, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31167565

RESUMEN

OBJECTIVE: The role of hepatocyte Abca1 (ATP binding cassette transporter A1) in trafficking hepatic free cholesterol (FC) into plasma versus bile for reverse cholesterol transport (RCT) is poorly understood. We hypothesized that hepatocyte Abca1 recycles plasma HDL-C (high-density lipoprotein cholesterol) taken up by the liver back into plasma, maintaining the plasma HDL-C pool, and decreasing HDL-mediated RCT into feces. Approach and Results: Chow-fed hepatocyte-specific Abca1 knockout (HSKO) and control mice were injected with human HDL radiolabeled with 125I-tyramine cellobiose (125I-TC; protein) and 3H-cholesteryl oleate (3H-CO). 125I-TC and 3H-CO plasma decay, plasma HDL 3H-CO selective clearance (ie, 3H-125I fractional catabolic rate), liver radiolabel uptake, and fecal 3H-sterol were significantly greater in HSKO versus control mice, supporting increased plasma HDL RCT. Twenty-four hours after 3H-CO-HDL injection, HSKO mice had reduced total hepatic 3H-FC (ie, 3H-CO hydrolyzed to 3H-FC in liver) resecretion into plasma, demonstrating Abca1 recycled HDL-derived hepatic 3H-FC back into plasma. Despite similar liver LDLr (low-density lipoprotein receptor) expression between genotypes, HSKO mice treated with LDLr-targeting versus control antisense oligonucleotide had slower plasma 3H-CO-HDL decay, reduced selective 3H-CO clearance, and decreased fecal 3H-sterol excretion that was indistinguishable from control mice. Increased RCT in HSKO mice was selective for 3H-CO-HDL, since macrophage RCT was similar between genotypes. CONCLUSIONS: Hepatocyte Abca1 deletion unmasks a novel and selective FC trafficking pathway that requires LDLr expression, accelerating plasma HDL-selective CE uptake by the liver and promoting HDL RCT into feces, consequently reducing HDL-derived hepatic FC recycling into plasma.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/fisiología , Colesterol/metabolismo , Hepatocitos/fisiología , Lipoproteínas HDL/sangre , Receptores de LDL/fisiología , Animales , Transporte Biológico , Femenino , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
8.
Food Chem Toxicol ; 113: 287-295, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29421645

RESUMEN

Although epidemiological data and results from rodent studies support an inverse relationship between nicotine consumption and body weight, the molecular mechanisms are poorly understood. CD-1 mice were fed a basal diet or a basal diet containing low or high dose smokeless tobacco blend or high dose nicotine tartrate for 14 weeks. High dose tobacco blend and nicotine tartrate diets vs. basal diet reduced mouse body weight (16.3% and 19.7%, respectively), epididymal (67.6% and 72.5%, respectively) and brown adipose weight (42% and 38%, respectively), epididymal adipocyte size (46.4% and 41.4%, respectively), and brown adipose tissue lipid droplet abundance, with no elevation of adipose tissue inflammation. High dose tobacco blend and nicotine diets also increased mouse physical activity and decreased respiratory exchange ratio, suggesting that high dose nicotine intake induces adipose tissue triglyceride lipolysis to provide fatty acids as an energy source. Both low and high dose tobacco blend and nicotine diet feeding vs. basal diet increased plasma insulin levels (2.9, 3.6 and 4.3-fold, respectively) and improved blood glucose disposal without affecting insulin sensitivity. Feeding of the high dose tobacco blend or nicotine feeding in mice induces body weight loss likely by increasing physical activity and stimulating adipose tissue triglyceride lipolysis.


Asunto(s)
Adipocitos/efectos de los fármacos , Nicotiana , Nicotina/farmacología , Condicionamiento Físico Animal , Pérdida de Peso/efectos de los fármacos , Adipocitos/citología , Tejido Adiposo/metabolismo , Animales , Glucemia/metabolismo , Tamaño de la Célula , Conducta Alimentaria , Insulina/sangre , Resistencia a la Insulina , Lipólisis , Masculino , Ratones , Triglicéridos/metabolismo
9.
Clin Perinatol ; 45(1): 75-91, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29406008

RESUMEN

Mutations of growth hormone genes and pituitary transcription factors account for a small proportion of cases of severe congenital hypopituitarism. Most cases show characteristic MRI findings of pituitary stalk interruption syndrome. Clinical suspicion should prompt assessment of cortisol, free T4, thyroid-stimulating hormone, and growth hormone levels together with MRI of the hypothalamic and pituitary regions.


Asunto(s)
Hormona Adrenocorticotrópica/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Hormona del Crecimiento/metabolismo , Hidrocortisona/metabolismo , Hipopituitarismo/metabolismo , Tirotropina/metabolismo , Hormona Antimülleriana/metabolismo , Hormona Folículo Estimulante/metabolismo , Hormona del Crecimiento/deficiencia , Terapia de Reemplazo de Hormonas , Humanos , Hipopituitarismo/congénito , Hipopituitarismo/diagnóstico por imagen , Hipopituitarismo/tratamiento farmacológico , Recién Nacido , Hormona Luteinizante/metabolismo , Imagen por Resonancia Magnética , Hipófisis/diagnóstico por imagen , Testosterona/metabolismo , Tiroxina/metabolismo
10.
Elife ; 62017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29144234

RESUMEN

Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional cell surface receptor with diverse physiological roles, ranging from cellular uptake of lipoproteins and other cargo by endocytosis to sensor of the extracellular environment and integrator of a wide range of signaling mechanisms. As a chylomicron remnant receptor, LRP1 controls systemic lipid metabolism in concert with the LDL receptor in the liver, whereas in smooth muscle cells (SMC) LRP1 functions as a co-receptor for TGFß and PDGFRß in reverse cholesterol transport and the maintenance of vascular wall integrity. Here we used a knockin mouse model to uncover a novel atheroprotective role for LRP1 in macrophages where tyrosine phosphorylation of an NPxY motif in its intracellular domain initiates a signaling cascade along an LRP1/SHC1/PI3K/AKT/PPARγ/LXR axis to regulate and integrate cellular cholesterol homeostasis through the expression of the major cholesterol exporter ABCA1 with apoptotic cell removal and inflammatory responses.


Asunto(s)
Aterosclerosis/patología , Colesterol/metabolismo , Homeostasis , Inflamación/patología , Macrófagos/inmunología , Receptores de LDL/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Apoptosis , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Ratones , Receptores de LDL/genética , Transducción de Señal , Proteínas Supresoras de Tumor/genética
11.
Oncotarget ; 8(42): 71965-71980, 2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-29069761

RESUMEN

Increased circulating levels of apolipoprotein A-I (apoA-I), the major protein of high-density lipoprotein (HDL), by genetic manipulation or infusion, protects against melanoma growth and metastasis. Herein, we explored potential roles in melanoma tumorigenesis for host scavenger receptor class B, type 1 (SR-B1), and ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1), all mediators of apoA-I and HDL sterol and lipid transport function. In a syngeneic murine melanoma tumor model, B16F10, mice with global deletion of SR-B1 expression exhibited increased plasma HDL cholesterol (HDLc) levels and decreased tumor volume, indicating host SR-B1 does not directly contribute to HDL-associated anti-tumor activity. In mice with myeloid-specific loss of ABCA1 (Abca1-M/-M ; A1-M/-M), tumor growth was inhibited by ∼4.8-fold relative to wild type (WT) animals. Abcg1-M/-M (G1-M/-M) animals were also protected by 2.5-fold relative to WT, with no further inhibition of tumor growth in Abca1/Abcg1 myeloid-specific double knockout animals (DKO). Analyses of tumor-infiltrating immune cells revealed a correlation between tumor protection and decreased presence of the immune suppressive myeloid-derived suppressor cell (MDSC) subsets, Ly-6G+Ly-6CLo and Ly-6GnegLy-6CHi cells. The growth of the syngeneic MB49 murine bladder cancer cells was also inhibited in A1-M/-M mice. Collectively, our studies provide further evidence for an immune modulatory role for cholesterol homeostasis pathways in cancer.

12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(10 Pt A): 1035-1043, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28694219

RESUMEN

ATP binding cassette transporter A1 (ABCA1) is a membrane transporter that facilitates nascent HDL formation. Tangier disease subjects with complete ABCA1 deficiency have <5% of normal levels of plasma HDL, elevated triglycerides (TGs), and defective vesicular trafficking in fibroblasts and macrophages. Hepatocyte-specific ABCA1 knockout mice (HSKO) have a similar lipid phenotype with 20% of normal plasma HDL levels and a two-fold elevation of plasma TGs due to hepatic overproduction of large, triglyceride-enriched VLDL. We hypothesized that enhanced VLDL TG secretion in the absence of hepatocyte ABCA1 is due to altered intracellular trafficking of apolipoprotein B (apoB), resulting in augmented TG addition to nascent VLDL. We found that trafficking of newly synthesized apoB through the secretory pathway was delayed in ABCA1-silenced rat hepatoma cells and HSKO primary hepatocytes, relative to controls. Endoglycosidase H treatment of cellular apoB revealed a likely delay in apoB trafficking in post-ER compartments. The reduced rate of protein trafficking was also observed for an adenoviral-expressed GPI-linked fluorescent fusion protein, but not albumin, suggesting a selective delay of secretory cargoes in the absence of hepatocyte ABCA1. Our results suggest an important role for hepatic ABCA1 in regulating secretory trafficking and modulating VLDL expansion during the TG accretion phase of hepatic lipoprotein particle assembly.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Apolipoproteínas B/metabolismo , Hepatocitos/metabolismo , Lipoproteínas VLDL/metabolismo , Hígado/metabolismo , Triglicéridos/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Animales , Apolipoproteínas B/genética , Línea Celular Tumoral , Silenciador del Gen , Lipoproteínas VLDL/genética , Hígado/patología , Ratones , Ratones Noqueados , Transporte de Proteínas/fisiología , Ratas , Triglicéridos/genética
13.
J Biol Chem ; 291(45): 23793-23803, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27655915

RESUMEN

Hepatic apolipoprotein A-IV (apoA-IV) expression is correlated with hepatic triglyceride (TG) content in mouse models of chronic hepatosteatosis, and steatosis-induced hepatic apoA-IV gene expression is regulated by nuclear transcription factor cAMP-responsive element-binding protein H (CREBH) processing. To define what aspects of TG homeostasis regulate hepatic CREBH processing and apoA-IV gene expression, several mouse models of attenuated VLDL particle assembly were subjected to acute hepatosteatosis induced by an overnight fast or short term ketogenic diet feeding. Compared with chow-fed C57BL/6 mice, fasted or ketogenic diet-fed mice displayed increased hepatic TG content, which was highly correlated (r2 = 0.95) with apoA-IV gene expression, and secretion of larger, TG-enriched VLDL, despite a lower rate of TG secretion and a similar or reduced rate of apoB100 secretion. When VLDL particle assembly and secretion was inhibited by hepatic shRNA-induced apoB silencing or genetic or pharmacologic reduction in microsomal triglyceride transfer protein (MTP) activity, hepatic TG content increased dramatically; however, CREBH processing and apoA-IV gene expression were attenuated compared with controls. Adenovirus-mediated reconstitution of MTP expression proportionately restored CREBH processing and apoA-IV expression in liver-specific MTP knock-out mice. These results reveal that hepatic TG content, per se, does not regulate CREBH processing. Instead, TG mobilization into the endoplasmic reticulum for nascent VLDL particle assembly activates CREBH processing and enhances apoA-IV gene expression in the setting of acute steatosis. We conclude that VLDL assembly and CREBH activation play key roles in the response to hepatic steatosis by up-regulating apoA-IV and promoting assembly and secretion of larger, more TG-enriched VLDL particles.


Asunto(s)
Apolipoproteínas A/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hígado Graso/metabolismo , Lipoproteínas VLDL/metabolismo , Hígado/metabolismo , Triglicéridos/metabolismo , Enfermedad Aguda , Animales , Apolipoproteínas A/metabolismo , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , AMP Cíclico/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Regulación de la Expresión Génica , Hígado/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Regulación hacia Arriba
14.
J Biol Chem ; 291(37): 19651-60, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27471270

RESUMEN

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression by promoting degradation and/or repressing translation of specific target mRNAs. Several miRNAs have been identified that regulate the amplitude of the innate immune response by directly targeting Toll-like receptor (TLR) pathway members and/or cytokines. miR-33a and miR-33b (the latter present in primates but absent in rodents and lower species) are located in introns of the sterol regulatory element-binding protein (SREBP)-encoding genes and control cholesterol/lipid homeostasis in concert with their host gene products. These miRNAs regulate macrophage cholesterol by targeting the lipid efflux transporters ATP binding cassette (ABC)A1 and ABCG1. We and others have previously reported that Abca1(-/-) and Abcg1(-/-) macrophages have increased TLR proinflammatory responses due to augmented lipid raft cholesterol. Given this, we hypothesized that miR-33 would augment TLR signaling in macrophages via a raft cholesterol-dependent mechanism. Herein, we report that multiple TLR ligands down-regulate miR-33 in murine macrophages. In the case of lipopolysaccharide, this is a delayed, Toll/interleukin-1 receptor (TIR) domain-containing adapter-inducing interferon-ß-dependent response that also down-regulates Srebf-2, the host gene for miR-33. miR-33 augments macrophage lipid rafts and enhances proinflammatory cytokine induction and NF-κB activation by LPS. This occurs through an ABCA1- and ABCG1-dependent mechanism and is reversible by interventions upon raft cholesterol and by ABC transporter-inducing liver X receptor agonists. Taken together, these findings extend the purview of miR-33, identifying it as an indirect regulator of innate immunity that mediates bidirectional cross-talk between lipid homeostasis and inflammation.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/inmunología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/inmunología , Inmunidad Innata , Macrófagos/inmunología , Microdominios de Membrana/inmunología , MicroARNs/inmunología , Transportador 1 de Casete de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Animales , Microdominios de Membrana/genética , Ratones , Ratones Noqueados , MicroARNs/genética , Células RAW 264.7 , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/inmunología
15.
Arterioscler Thromb Vasc Biol ; 36(7): 1328-37, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27199450

RESUMEN

OBJECTIVE: Plasma high-density lipoproteins have several putative antiatherogenic effects, including preservation of endothelial functions. This is thought to be mediated, in part, by the ability of high-density lipoproteins to promote cholesterol efflux from endothelial cells (ECs). The ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) interact with high-density lipoproteins to promote cholesterol efflux from ECs. To determine the impact of endothelial cholesterol efflux pathways on atherogenesis, we prepared mice with endothelium-specific knockout of Abca1 and Abcg1. APPROACH AND RESULTS: Generation of mice with EC-ABCA1 and ABCG1 deficiency required crossbreeding Abca1(fl/fl)Abcg1(fl/fl)Ldlr(-/-) mice with the Tie2Cre strain, followed by irradiation and transplantation of Abca1(fl/fl)Abcg1(fl/fl) bone marrow to abrogate the effects of macrophage ABCA1 and ABCG1 deficiency induced by Tie2Cre. After 20 to 22 weeks of Western-type diet, both single EC-Abca1 and Abcg1 deficiency increased atherosclerosis in the aortic root and whole aorta. Combined EC-Abca1/g1 deficiency caused a significant further increase in lesion area at both sites. EC-Abca1/g1 deficiency dramatically enhanced macrophage lipid accumulation in the branches of the aorta that are exposed to disturbed blood flow, decreased aortic endothelial NO synthase activity, and increased monocyte infiltration into the atherosclerotic plaque. Abca1/g1 deficiency enhanced lipopolysaccharide-induced inflammatory gene expression in mouse aortic ECs, which was recapitulated by ABCG1 deficiency in human aortic ECs. CONCLUSIONS: These studies provide direct evidence that endothelial cholesterol efflux pathways mediated by ABCA1 and ABCG1 are nonredundant and atheroprotective, reflecting preservation of endothelial NO synthase activity and suppression of endothelial inflammation, especially in regions of disturbed arterial blood flow.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/deficiencia , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/deficiencia , Aorta Torácica/metabolismo , Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Colesterol/metabolismo , Células Endoteliales/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Animales , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Trasplante de Médula Ósea , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales/patología , Predisposición Genética a la Enfermedad , Mediadores de Inflamación/metabolismo , Macrófagos/metabolismo , Masculino , Ratones Noqueados , Monocitos/metabolismo , Neovascularización Fisiológica , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fenotipo , Placa Aterosclerótica , Receptores de LDL/deficiencia , Receptores de LDL/genética , Flujo Sanguíneo Regional , Neovascularización Retiniana/genética , Neovascularización Retiniana/metabolismo , Factores de Tiempo , Técnicas de Cultivo de Tejidos , Irradiación Corporal Total
16.
Diabetes ; 65(6): 1565-76, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26822081

RESUMEN

Macrophage inflammation marks all stages of atherogenesis, and AMPK is a regulator of macrophage inflammation. We therefore generated myeloid α1AMPK knockout (MAKO) mice on the LDL receptor knockout (LDLRKO) background to investigate whether myeloid deletion of α1AMPK exacerbates atherosclerosis. When fed an atherogenic diet, MAKO/LDLRKO mice displayed exacerbated atherosclerosis compared with LDLRKO mice. To determine the underlying pathophysiological pathways, we characterized macrophage inflammation/chemotaxis and lipid/cholesterol metabolism in MAKO/LDLRKO mice. Myeloid deletion of α1AMPK increased macrophage inflammatory gene expression and enhanced macrophage migration and adhesion to endothelial cells. Remarkably, MAKO/LDLRKO mice also displayed higher composition of circulating chemotaxically active Ly-6C(high) monocytes, enhanced atherosclerotic plaque chemokine expression, and monocyte recruitment into plaques, leading to increased atherosclerotic plaque macrophage content and inflammation. MAKO/LDLRKO mice also exhibited higher plasma LDL and VLDL cholesterol content, increased circulating apolipoprotein B (apoB) levels, and higher liver apoB expression. We conclude that macrophage α1AMPK deficiency promotes atherogenesis in LDLRKO mice and is associated with enhanced macrophage inflammation and hypercholesterolemia and that macrophage α1AMPK may serve as a therapeutic target for prevention and treatment of atherosclerosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/deficiencia , Aterosclerosis/etiología , Macrófagos/metabolismo , Células Mieloides/metabolismo , Receptores de LDL/deficiencia , Animales , Apolipoproteínas B/sangre , LDL-Colesterol/sangre , VLDL-Colesterol/sangre , Dieta Aterogénica/efectos adversos , Progresión de la Enfermedad , Hipercolesterolemia/etiología , Hígado/metabolismo , Ratones , Ratones Noqueados , Monocitos/fisiología , Placa Aterosclerótica/metabolismo , Receptores de LDL/genética
17.
Eur J Hum Genet ; 24(3): 415-20, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26059845

RESUMEN

Two variants (c.[301_302delAG];[301_302delAG] and c.[150delA];[150delA]) in the PROP1 gene are the most common genetic causes of recessively inherited combined pituitary hormones deficiency (CPHD). Our objective was to analyze in detail the origin of the two most prevalent variants. In the multicentric study were included 237 patients with CPHD and their 15 relatives carrying c.[301_302delAG];[301_302delAG] or c.[150delA];[150delA] or c.[301_302delAG];[ 150delA]. They originated from 21 different countries worldwide. We genotyped 21 single-nucleotide variant markers flanking the 9.6-Mb region around the PROP1 gene that are not in mutual linkage disequilibrium in the general populations--a finding of a common haplotype would be indicative of ancestral origin of the variant. Haplotypes were reconstructed by Phase and Haploview software, and the variant age was estimated using an allelic association method. We demonstrated the ancestral origin of both variants--c.[301_302delAG] was carried on 0.2 Mb-long haplotype in a majority of European patients arising ~101 generations ago (confidence interval 90.1-116.4). Patients from the Iberian Peninsula displayed a different haplotype, which was estimated to have emerged 23.3 (20.1-29.1) generations ago. Subsequently, the data indicated that both the haplotypes were transmitted to Latin American patients ~13.8 (12.2-17.0) and 16.4 (14.4-20.1) generations ago, respectively. The c.[150delA] variant that was carried on a haplotype spanning about 0.3 Mb was estimated to appear 43.7 (38.4-52.7) generations ago. We present strong evidence that the most frequent variants in the PROP1 gene are not a consequence of variant hot spots as previously assumed, but are founder variants.


Asunto(s)
Predisposición Genética a la Enfermedad , Haplotipos/genética , Proteínas de Homeodominio/genética , Hipopituitarismo/genética , Mutación/genética , Humanos , Prevalencia , Programas Informáticos
18.
J Lipid Res ; 56(8): 1583-93, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26089538

RESUMEN

Two APOL1 gene variants, which likely evolved to protect individuals from African sleeping sickness, are strongly associated with nondiabetic kidney disease in individuals with recent African ancestry. Consistent with its role in trypanosome killing, the pro-death APOL1 protein is toxic to most cells, but its mechanism of cell death is poorly understood and little is known regarding its intracellular trafficking and secretion. Because the liver appears to be the main source of circulating APOL1, we examined its secretory behavior and mechanism of toxicity in hepatoma cells and primary human hepatocytes. APOL1 is poorly secreted in vitro, even in the presence of chemical chaper-ones; however, it is efficiently secreted in wild-type transgenic mice, suggesting that APOL1 secretion has specialized requirements that cultured cells fail to support. In hepatoma cells, inducible expression of APOL1 and its risk variants promoted cell death, with the G1 variant displaying the highest degree of toxicity. To explore the basis for APOL1-mediated cell toxicity, endoplasmic reticulum stress, pyroptosis, autophagy, and apoptosis were examined. Our results suggest that autophagy represents the predominant mechanism of APOL1-mediated cell death. Overall, these results increase our understanding of the basic biology and trafficking behavior of circulating APOL1 from the liver.


Asunto(s)
Apolipoproteínas/biosíntesis , Apolipoproteínas/genética , Carcinoma Hepatocelular/patología , Predisposición Genética a la Enfermedad/genética , Variación Genética , Hepatocitos/metabolismo , Lipoproteínas HDL/biosíntesis , Lipoproteínas HDL/genética , Neoplasias Hepáticas/patología , Secuencia de Aminoácidos , Animales , Apolipoproteína L1 , Apolipoproteínas/química , Apolipoproteínas/metabolismo , Autofagia , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Hepatocitos/patología , Humanos , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Masculino , Ratones , Datos de Secuencia Molecular , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Piroptosis , Ratas
19.
Mol Cell Proteomics ; 14(7): 1859-70, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25910759

RESUMEN

Lipid raft membrane microdomains organize signaling by many prototypical receptors, including the Toll-like receptors (TLRs) of the innate immune system. Raft-localization of proteins is widely thought to be regulated by raft cholesterol levels, but this is largely on the basis of studies that have manipulated cell cholesterol using crude and poorly specific chemical tools, such as ß-cyclodextrins. To date, there has been no proteome-scale investigation of whether endogenous regulators of intracellular cholesterol trafficking, such as the ATP binding cassette (ABC)A1 lipid efflux transporter, regulate targeting of proteins to rafts. Abca1(-/-) macrophages have cholesterol-laden rafts that have been reported to contain increased levels of select proteins, including TLR4, the lipopolysaccharide receptor. Here, using quantitative proteomic profiling, we identified 383 proteins in raft isolates from Abca1(+/+) and Abca1(-/-) macrophages. ABCA1 deletion induced wide-ranging changes to the raft proteome. Remarkably, many of these changes were similar to those seen in Abca1(+/+) macrophages after lipopolysaccharide exposure. Stomatin-like protein (SLP)-2, a member of the stomatin-prohibitin-flotillin-HflK/C family of membrane scaffolding proteins, was robustly and specifically increased in Abca1(-/-) rafts. Pursuing SLP-2 function, we found that rafts of SLP-2-silenced macrophages had markedly abnormal composition. SLP-2 silencing did not compromise ABCA1-dependent cholesterol efflux but reduced macrophage responsiveness to multiple TLR ligands. This was associated with reduced raft levels of the TLR co-receptor, CD14, and defective lipopolysaccharide-induced recruitment of the common TLR adaptor, MyD88, to rafts. Taken together, we show that the lipid transporter ABCA1 regulates the protein repertoire of rafts and identify SLP-2 as an ABCA1-dependent regulator of raft composition and of the innate immune response.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/deficiencia , Macrófagos/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteómica/métodos , Transducción de Señal , Receptores Toll-Like/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Eliminación de Gen , Silenciador del Gen/efectos de los fármacos , Células HEK293 , Humanos , Inmunidad Innata/efectos de los fármacos , Ligandos , Lipopolisacáridos/farmacología , Microdominios de Membrana/efectos de los fármacos , Ratones , Proteoma/metabolismo , Transducción de Señal/efectos de los fármacos
20.
J Biol Chem ; 290(12): 7861-70, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25627684

RESUMEN

Apolipoprotein M (apoM), a plasma sphingosine 1-phosphate (S1P) carrier, associates with plasma HDL via its uncleaved signal peptide. Hepatocyte-specific apoM overexpression in mice stimulates formation of both larger nascent HDL in hepatocytes and larger mature apoM/S1P-enriched HDL particles in plasma by enhancing hepatic S1P synthesis and secretion. Mutagenesis of apoM glutamine 22 to alanine (apoM(Q22A)) introduces a functional signal peptidase cleavage site. Expression of apoM(Q22A) in ABCA1-expressing HEK293 cells resulted in the formation of smaller nascent HDL particles compared with wild type apoM (apoM(WT)). When apoM(Q22A) was expressed in vivo, using recombinant adenoviruses, smaller plasma HDL particles and decreased plasma S1P and apoM were observed relative to expression of apoM(WT). Hepatocytes isolated from both apoM(WT)- and apoM(Q22A)-expressing mice displayed an equivalent increase in cellular levels of S1P, relative to LacZ controls; however, relative to apoM(WT), apoM(Q22A) hepatocytes displayed more rapid apoM and S1P secretion but minimal apoM(Q22A) bound to nascent lipoproteins. Pharmacologic inhibition of ceramide synthesis increased cellular sphingosine and S1P but not medium S1P in both apoM(WT) and apoM(Q22A) hepatocytes. We conclude that apoM secretion is rate-limiting for hepatocyte S1P secretion and that its uncleaved signal peptide delays apoM trafficking out of the cell, promoting formation of larger nascent apoM- and S1P-enriched HDL particles that are probably precursors of larger apoM/S1P-enriched plasma HDL.


Asunto(s)
Apolipoproteínas/metabolismo , Lipoproteínas HDL/química , Lisofosfolípidos/química , Señales de Clasificación de Proteína , Esfingosina/análogos & derivados , Animales , Apolipoproteínas/química , Apolipoproteínas M , Masculino , Ratones , Ratones Endogámicos C57BL , Esfingosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA