Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int J Mol Sci ; 25(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39201609

RESUMEN

Ocrelizumab (OCR) is a humanized anti-CD20 monoclonal antibody approved for both Relapsing and Primary Progressive forms of Multiple Sclerosis (MS) treatment. OCR is postulated to act via rapid B cell depletion; however, by analogy with other anti-CD20 agents, additional effects can be envisaged, such as on Protein Kinase C (PKC). Hence, this work aims to explore novel potential mechanisms of action of OCR in peripheral blood mononuclear cells from MS patients before and after 12 months of OCR treatment. We first assessed, up-stream, PKCßII and subsequently explored two down-stream pathways: hypoxia-inducible factor 1 alpha (HIF-1α)/vascular endothelial growth factor (VEGF), and human antigen R (HuR)/manganese-dependent superoxide dismutase (MnSOD) and heat shock proteins 70 (HSP70). At baseline, higher levels of PKCßII, HIF-1α, and VEGF were found in MS patients compared to healthy controls (HC); interestingly, the overexpression of this inflammatory cascade was counteracted by OCR treatment. Conversely, at baseline, the content of HuR, MnSOD, and HSP70 was significantly lower in MS patients compared to HC, while OCR administration induced the up-regulation of these neuroprotective pathways. These results enable us to disclose the dual positive action of OCR: anti-inflammatory and neuroprotective. Therefore, in addition to B cell depletion, the effect of OCR on these molecular cascades can contribute to counteracting disease progression.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Esclerosis Múltiple , Proteína Quinasa C beta , Humanos , Femenino , Proteína Quinasa C beta/metabolismo , Masculino , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Adulto , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacología , Persona de Mediana Edad , Factor A de Crecimiento Endotelial Vascular/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Superóxido Dismutasa/metabolismo
2.
Nat Prod Res ; 38(5): 861-866, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36964661

RESUMEN

A major issue in Alzheimer's disease (AD) research is to find some new therapeutic drug which decrease Amyloid-beta (Aß) aggregation. From a therapeutic point of view the major question is whether pharmacological inhibition of inflammation pathways will be able to safely reverse or slow the course of disease. Natural compounds are capable of binding to different targets implicated in AD and exert neuroprotective effects. Aim of this study was to evaluate the in vitro inhibition of Aß1-42 fibrillogenesis in presence of Gallic acid, Rutin, Melatonin and ProvinolsTM . We performed the analysis with Transmission and Scanning Electron Microscopy, and with X-ray microanalysis. Samples treated with Rutin, that arises from phenylalanine via the phenylpropanoid pathway, show the best effective result obtained because a significantly fibril inhibition activity is detectable compared to the other compounds. Melatonin shows a better inhibitory activity than ProvinolsTM and Gallic acid at the considered concentrations.


Asunto(s)
Enfermedad de Alzheimer , Melatonina , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Melatonina/farmacología , Melatonina/uso terapéutico , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Rutina/farmacología , Ácido Gálico/farmacología , Dieta , Polifenoles , Fragmentos de Péptidos/química
3.
Curr Neuropharmacol ; 22(1): 53-64, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37550909

RESUMEN

A majority of older patients suffer from neuropathic pain (NP) that significantly alters their daily activities and imposes a significant burden on health care. Multiple comorbidities and the risk of polypharmacy in the elderly make it challenging to determine the appropriate drug, dosage, and maintenance of therapy. Age-dependent processes play a contributing role in neuropathy given that diabetic neuropathy (DN) is the most common form of neuropathy. This narrative review is mainly focused on the drug treatment approach for neuropathy-associated pain in aged people including both drugs and dietary supplements, considering the latter as add-on mechanism-based treatments to increase the effectiveness of usual treatments by implementing their activity or activating other analgesic pathways. On one hand, the limited clinical studies assessing the effectiveness and the adverse effects of existing pain management options in this age segment of the population (> 65), on the other hand, the expanding global demographics of the elderly contribute to building up an unresolved pain management problem that needs the attention of healthcare providers, researchers, and health authorities as well as the expansion of the current therapeutic options.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Neuralgia , Anciano , Humanos , Neuropatías Diabéticas/complicaciones , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/inducido químicamente , Neuralgia/tratamiento farmacológico , Analgésicos/uso terapéutico , Analgésicos/efectos adversos , Manejo del Dolor , Suplementos Dietéticos , Diabetes Mellitus/inducido químicamente , Diabetes Mellitus/tratamiento farmacológico
4.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37569576

RESUMEN

The RNA-binding protein HuD has been shown to play a crucial role in gene regulation in the nervous system and is involved in various neurological and psychiatric diseases. In this study, through the creation of an interaction network on HuD and its potential targets, we identified a strong association between HuD and several diseases of the nervous system. Specifically, we focused on the relationship between HuD and the brain-derived neurotrophic factor (BDNF), whose protein is implicated in several neuronal diseases and is involved in the regulation of neuronal development, survival, and function. To better investigate this relationship and given that we previously demonstrated that folic acid (FA) is able to directly bind HuD itself, we performed in vitro experiments in neuron-like human SH-SY5Y cells in the presence of FA, also known to be a pivotal environmental factor influencing the nervous system development. Our findings show that FA exposure results in a significant increase in both HuD and BDNF transcripts and proteins after 2 and 4 h of treatment, respectively. Similar data were obtained after 2 h of FA incubation followed by 2 h of washout. This increase was no longer detected upon 24 h of FA exposure, probably due to a signaling shutdown mechanism. Indeed, we observed that following 24 h of FA exposure HuD is methylated. These findings indicate that FA regulates BDNF expression via HuD and suggest that FA can behave as an epigenetic modulator of HuD in the nervous system acting via short- and long-term mechanisms. Finally, the present results also highlight the potential of BDNF as a therapeutic target for specific neurological and psychiatric diseases.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Neuroblastoma , Humanos , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Proteína 4 Similar a ELAV/genética , Neuroblastoma/metabolismo , Neuronas/metabolismo
5.
Int J Mol Sci ; 24(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37298395

RESUMEN

Ischemic stroke is the most common cause of adult disability and one of the leading causes of death worldwide, with a serious socio-economic impact. In the present work, we used a new thromboembolic model, recently developed in our lab, to induce focal cerebral ischemic (FCI) stroke in rats without reperfusion. We analyzed selected proteins implicated in the inflammatory response (such as the RNA-binding protein HuR, TNFα, and HSP70) via immunohistochemistry and western blotting techniques. The main goal of the study was to evaluate the beneficial effects of a single administration of minocycline at a low dose (1 mg/kg intravenously administered 10 min after FCI) on the neurons localized in the penumbra area after an ischemic stroke. Furthermore, given the importance of understanding the crosstalk between molecular parameters and motor functions following FCI, motor tests were also performed, such as the Horizontal Runway Elevated test, CatWalk™ XT, and Grip Strength test. Our results indicate that a single administration of a low dose of minocycline increased the viability of neurons and reduced the neurodegeneration caused by ischemia, resulting in a significant reduction in the infarct volume. At the molecular level, minocycline resulted in a reduction in TNFα content coupled with an increase in the levels of both HSP70 and HuR proteins in the penumbra area. Considering that both HSP70 and TNF-α transcripts are targeted by HuR, the obtained results suggest that, following FCI, this RNA-binding protein promotes a protective response by shifting its binding towards HSP70 instead of TNF-α. Most importantly, motor tests showed that reduced inflammation in the brain damaged area after minocycline treatment directly translated into a better motor performance, which is a fundamental outcome when searching for new therapeutic options for clinical practice.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Animales , Minociclina/farmacología , Minociclina/uso terapéutico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/farmacología , Ratas Sprague-Dawley , Neuronas , Accidente Cerebrovascular/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Modelos Animales de Enfermedad
6.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37372956

RESUMEN

The endogenous antioxidant defense plays a big part in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), a common metabolic disorder that can lead to serious complications such as cirrhosis and cancer. HuR, an RNA-binding protein of the ELAV family, controls, among others, the stability of MnSOD and HO-1 mRNA. These two enzymes protect the liver cells from oxidative damage caused by excessive fat accumulation. Our aim was to investigate the expression of HuR and its targets in a methionine-choline deficient (MCD) model of NAFLD. To this aim, we fed male Wistar rats with an MCD diet for 3 and 6 weeks to induce NAFLD; then, we evaluated the expression of HuR, MnSOD, and HO-1. The MCD diet induced fat accumulation, hepatic injury, oxidative stress, and mitochondrial dysfunction. A HuR downregulation was also observed in association with a reduced expression of MnSOD and HO-1. Moreover, the changes in the expression of HuR and its targets were significantly correlated with oxidative stress and mitochondrial injury. Since HuR plays a protective role against oxidative stress, targeting this protein could be a therapeutic strategy to both prevent and counteract NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratas , Masculino , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Colina/metabolismo , Metionina/metabolismo , Ratas Wistar , Hígado/metabolismo , Estrés Oxidativo , Racemetionina/metabolismo , Dieta/efectos adversos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
7.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37047617

RESUMEN

Amyloid Precursor Protein (APP) and its cleavage processes have been widely investigated in the past, in particular in the context of Alzheimer's Disease (AD). Evidence of an increased expression of APP and its amyloidogenic-related cleavage enzymes, ß-secretase 1 (BACE1) and γ-secretase, at the hit axon terminals following Traumatic Brain Injury (TBI), firstly suggested a correlation between TBI and AD. Indeed, mild and severe TBI have been recognised as influential risk factors for different neurodegenerative diseases, including AD. In the present work, we describe the state of the art of APP proteolytic processing, underlining the different roles of its cleavage fragments in both physiological and pathological contexts. Considering the neuroprotective role of the soluble APP alpha (sAPPα) fragment, we hypothesised that sAPPα could modulate the expression of genes of interest for AD and TBI. Hence, we present preliminary experiments addressing sAPPα-mediated regulation of BACE1, Isthmin 2 (ISM2), Tetraspanin-3 (TSPAN3) and the Vascular Endothelial Growth Factor (VEGFA), each discussed from a biological and pharmacological point of view in AD and TBI. We finally propose a neuroprotective interaction network, in which the Receptor for Activated C Kinase 1 (RACK1) and the signalling cascade of PKCßII/nELAV/VEGF play hub roles, suggesting that vasculogenic-targeting therapies could be a feasible approach for vascular-related brain injuries typical of AD and TBI.


Asunto(s)
Enfermedad de Alzheimer , Lesiones Traumáticas del Encéfalo , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Factor A de Crecimiento Endotelial Vascular , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo
8.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203377

RESUMEN

N-acetylcysteine (NAC), a mucolytic agent and an antidote to acetaminophen intoxication, has been studied in experimental conditions and trials exploring its analgesic activity based on its antioxidant and anti-inflammatory properties. The purpose of this study is to investigate additional mechanisms, namely, the inhibition of nerve growth factor (NGF) and the activation of the Tropomyosin receptor kinase A (TrkA) receptor, which is responsible for nociception. In silico studies were conducted to evaluate dithiothreitol and NAC's interaction with TrkA. We also measured the autophosphorylation of TrkA in SH-SY5Y cells via ELISA to assess NAC's in vitro activity against NGF-induced TrkA activation. The in silico and in vitro tests show that NAC interferes with NGF-induced TrkA activation. In particular, NAC breaks the disulfide-bound Cys 300-345 of TrkA, perturbing the NGF-TrkA interaction and producing a rearrangement of the binding site, inducing a consequent loss of their molecular recognition and spatial reorganization, which are necessary for the induction of the autophosphorylation process. The latter was inhibited by 40% using 20 mM NAC. These findings suggest that NAC could have a role as a TrkA antagonist, an action that may contribute to the activity and use of NAC in various pain states (acute, chronic, nociplastic) sustained by NGF hyperactivity and/or accompanied by spinal cord sensitization.


Asunto(s)
Acetilcisteína , Neuroblastoma , Humanos , Acetilcisteína/farmacología , Factor de Crecimiento Nervioso/farmacología , Analgésicos/farmacología , Disulfuros
9.
Mult Scler Relat Disord ; 68: 104197, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36270254

RESUMEN

BACKGROUND: Dimethyl fumarate (DMF) is an effective treatment for relapsing remitting Multiple Sclerosis (MS) and its mechanisms of action encompass immunomodulatory and cytoprotective effects. Despite DMF is known to activate the Nrf2 pathway, Nrf2-independent mechanisms have been also reported and new insights on the underlying molecular mechanisms are still emerging including transcriptional and post-transcriptional events. At this regard, we focused on a small family of RNA-binding proteins, the ELAV-like proteins, that play a pivotal role in post-transcriptional mechanisms and are involved in the pathogenesis of several psychiatric and neurologic disorders. HuR, the ubiquitously expressed member of the family, is implicated in many cellular functions, including survival, inflammation and proper functioning of the immune system. We previously documented the potential entanglement of HuR in MS pathogenesis. In the present work, we explored HuR protein levels in peripheral blood mononuclear cells (PBMCs) from MS patients before and after DMF treatment compared to healthy controls (HC). Considering that HuR may act on various targets, playing a protective role against oxidative stress, our main goals were to evaluate whether manganese-dependent superoxide dismutase transcript (SOD2) could represent a new molecular target of HuR and to study the potential influence of DMF treatment on this interaction. METHODS: PBMCs from 20 patients with MS and 20 frequency-matched HC by sex and age were used to evaluate HuR, MnSOD (the protein coded by SOD2) and Nrf2 protein content by Western blot, before and after 12 months of DMF treatment. Immunoprecipitation experiments coupled with RNA extraction in PBMCs were performed to explore whether SOD2 mRNA could be physically bound by HuR and whether the expression of MnSOD protein could be affected by 12 months of DMF treatment. RESULTS: In PBMCs, HuR protein binds SOD2 transcript in HC and in MS patients naïve to disease modifying treatment. The expression of MnSOD protein is positively affected by 12 months of DMF treatment. PBMCs from MS patients have a lower HuR and MnSOD protein content compared to matched HC (HuR: p<0.01, MnSOD: p<0.01). Of interest, 12 months of DMF treatment in MS patients restores the amount of both HuR protein and MnSOD enzyme to the levels observed in HC. We also confirmed that Nrf2 is an HuR target, and we report that its levels are significantly increased in MS patients naïve to disease modifying treatment and remain elevated following DMF administration. CONCLUSION: SOD2 transcript is a new target of HuR protein. DMF induces an increased expression of HuR protein, which ultimately interacts more strongly with SOD2 transcript promoting the expression of this antioxidant protein. The activation of this molecular cascade can constitute an additional tool that the cells can exploit to counteract the oxidative stress associated with MS development, and can account for the multifaceted molecular mechanisms underlying DMF efficacy in MS.


Asunto(s)
Dimetilfumarato , Esclerosis Múltiple Recurrente-Remitente , Humanos , Lactante , Dimetilfumarato/uso terapéutico , Proteína 1 Similar a ELAV , Inmunosupresores/uso terapéutico , Leucocitos Mononucleares/metabolismo , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico
10.
Antioxidants (Basel) ; 11(7)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35883714

RESUMEN

Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.

11.
Surv Ophthalmol ; 67(3): 675-696, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34563531

RESUMEN

Glaucoma is a major ocular neurodegenerative disease characterized by progressive retinal ganglion cells degeneration and sight loss. Current treatment options have been limited to reducing intraocular pressure (IOP), known as the leading risk factor for this disease; however, glaucoma can develop even with low or normal IOP and progress despite controlling IOP values. Lifestyle, dietary habits, and supplementation may influence some of the risk factors and pathophysiological mechanisms underlying glaucoma development and progression; thus, the role of this complementary and alternative medicine in glaucoma has received great interest from both patients and ophthalmologists. We provide a summary of the current evidence concerning the relationship between lifestyle, dietary habits, and effects of supplements on the incidence and progression of glaucoma and their targets and associated mechanisms. The data suggest the existence of a therapeutic potential that needs to be further explored with both preclinical and rigorous clinical studies.


Asunto(s)
Glaucoma , Enfermedades Neurodegenerativas , Dieta , Suplementos Dietéticos , Humanos , Presión Intraocular , Estilo de Vida
12.
J Med Chem ; 64(14): 9989-10000, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34219450

RESUMEN

ELAV-like (ELAVL) RNA-binding proteins play a pivotal role in post-transcriptional processes, and their dysregulation is involved in several pathologies. This work was focused on HuD (ELAVL4), which is specifically expressed in nervous tissues, and involved in differentiation and synaptic plasticity mechanisms. HuD represents a new, albeit unexplored, candidate target for the treatment of several relevant neurodegenerative diseases. The aim of this pioneering work was the identification of new molecules able to recognize and bind HuD, thus interfering with its activity. We combined virtual screening, molecular dynamics (MD), and STD-NMR techniques. Starting from around 51 000 compounds, four promising hits eventually provided experimental evidence of their ability to bind HuD. Among the selected best hits, folic acid was found to be the most interesting one, being able to well recognize the HuD binding site. Our results provide a basis for the identification of new HuD interfering compounds which may be useful against neurodegenerative syndromes.


Asunto(s)
Proteína 4 Similar a ELAV/antagonistas & inhibidores , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Proteína 4 Similar a ELAV/metabolismo , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Relación Estructura-Actividad
13.
PLoS One ; 15(11): e0242627, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33253266

RESUMEN

Chronic conditions requiring long-term rehabilitation therapies, such as hypertension, stroke, or cancer, involve complex interactions between various systems/organs of the body and mutual influences, thus implicating a multiorgan approach. The dual-flow IVTech LiveBox2 bioreactor is a recently developed inter-connected dynamic cell culture model able to mimic organ crosstalk, since cells belonging to different organs can be connected and grown under flow conditions in a more physiological environment. This study aims to setup for the first time a 2-way connected culture of human neuroblastoma cells, SH-SY5Y, and Human Coronary Artery Smooth Muscle Cells, HCASMC through a dual-flow IVTech LiveBox2 bioreactor, in order to represent a simplified model of nervous-cardiovascular systems crosstalk, possibly relevant for the above-mentioned diseases. The system was tested by treating the cells with 10nM angiotensin II (AngII) inducing PKCßII/HuR/VEGF pathway activation, since AngII and PKCßII/HuR/VEGF pathway are relevant in cardiovascular and neuroscience research. Three different conditions were applied: 1- HCASMC and SH-SY5Y separately seeded in petri dishes (static condition); 2- the two cell lines separately seeded under flow (dynamic condition); 3- the two lines, seeded in dynamic conditions, connected, each maintaining its own medium, with a membrane as interface for biohumoral changes between the two mediums, and then treated. We detected that only in condition 3 there was a synergic AngII-dependent VEGF production in SH-SY5Y cells coupled to an AngII-dependent PKCßII/HuR/VEGF pathway activation in HCASMC, consistent with the observed physiological response in vivo. HCASMC response to AngII seems therefore to be generated by/derived from the reciprocal cell crosstalk under the dynamic inter-connection ensured by the dual flow LiveBox 2 bioreactor. This system can represent a useful tool for studying the crosstalk between organs, helpful for instance in rehabilitation research or when investigating chronic diseases; further, it offers the advantageous opportunity of cultivating each cell line in its own medium, thus mimicking, at least in part, distinct tissue milieu.


Asunto(s)
Reactores Biológicos , Comunicación Celular , Modelos Cardiovasculares , Modelos Neurológicos , Miocitos del Músculo Liso/metabolismo , Neuronas/metabolismo , Transducción de Señal , Línea Celular Tumoral , Humanos , Miocitos del Músculo Liso/citología , Neuronas/citología
14.
Mult Scler Relat Disord ; 41: 102048, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32200342

RESUMEN

BACKGROUND: ELAV-like proteins are a small family of RNA-binding proteins that are fundamental players in post-transcriptional mechanisms and are involved in the pathogenesis of neurologic and psychiatric disorders. HuR, the ubiquitously expressed member of the family, is also implicated in sustaining inflammation and inflammatory diseases, supporting the production of pro-inflammatory cytokines. Inflammation plays a central role in Multiple Sclerosis (MS), which represents the most common cause of permanent physical disability in young adults. MS is a chronic autoimmune disease affecting the Central Nervous System, with a complex aetiology involving genetic, environmental and epigenetic factors. No data are available on the potential entanglement of HuR in MS pathogenesis in patients. In the present work, we aimed at exploring HuR protein levels in peripheral blood mononuclear cells (PBMCs) from MS patients, compared to healthy controls. To further elucidate the possible involvement of HuR in MS, we also investigated the relationship between this specific RNA-binding protein and HSP70-2 protein, also considering the HSP70-2 rs1061581 polymorphism, given that HSP70-2 mRNA has been reported as a HuR target and this specific polymorphism to be associated with MS risk. METHODS: Alleles and genotypes for HSP70-2 rs1061581 polymorphism were assessed, by using a Polymerase Chain Reaction-Restriction Fragment Length Polymorphism, followed by digestion with restriction enzyme, in MS patients and healthy controls. PBMCs from a subgroup of patients and controls were used to evaluate HuR and HSP70-2 protein content by Western blot. RESULTS: PBMCs from 52 MS patients had a lower HuR and higher HSP70-2 protein content compared to 43 healthy controls. An increase of 100 units of HuR significantly decreased the risk of developing MS by 9.8% (OR: 0.902, 95% CI: 0.83-0.98), controlling for HSP70-2 protein expression, HSP70-2 rs1061581 genotype, age and sex. Moreover, holding HuR levels, an increase of 100 units of HSP70-2 protein significantly increased the MS risk by 18.1% (OR: 1.181, 95% CI: 1.03-1.36) and the genetic susceptibility of developing MS for HSP70-2 rs1061581 GG carriers is confirmed. Of interest, MS patients with a moderate to severe form of MS (MSSS ≥ 3) showed a trend towards a reduction of HuR protein levels compared to patients with mild disease severity (MSSS < 3). CONCLUSIONS: HuR protein levels are reduced in MS patients compared to healthy subjects, and the protein amount may continue to decline with disease progression, suggesting a putative role of this RNA-binding protein. Moreover, our results suggest that MS pathology may have disrupted the link between HuR and its target transcript HSP70-2. It will be important to further explore the exact role of HuR in MS, considering the complex interplay with other RNA-binding factors and target mRNAs.


Asunto(s)
Proteína 1 Similar a ELAV/sangre , Proteínas HSP70 de Choque Térmico/sangre , Esclerosis Múltiple/sangre , Esclerosis Múltiple/epidemiología , Adulto , Femenino , Predisposición Genética a la Enfermedad , Proteínas HSP70 de Choque Térmico/genética , Humanos , Leucocitos Mononucleares , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/fisiopatología , Riesgo , Índice de Severidad de la Enfermedad
15.
Biochem Pharmacol ; 175: 113908, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32171729

RESUMEN

The ELAVL1 (or human antigen R - HuR) RNA binding protein stabilizes the mRNA, with an AU-rich element, of several genes such as growth factors (i.e. VEGF) and inflammatory cytokines (i.e. TNFα). We hereby carried out a virtual screening campaign in order to identify and test novel HuR-mRNA disruptors. Best-scored compounds were tested in an in-vitro model of diabetic retinopathy, namely human retinal endothelial cells (HRECs) challenged with high-glucose levels (25 mM). HuR, VEGF and TNFα protein contents were evaluated by western-blot analysis in total cell lysates. VEGF and TNFα released from HRECs were measured in cell medium by ELISA. We found that two derivatives bearing indole moiety, VP12/14 and VP12/110, modulated HuR expression and decreased VEGF and TNF-α release by HREC exposed to high glucose (HG) levels. VP12/14 and VP12/110 inhibited VEGF and TNF-α release in HRECs challenged with high glucose levels, similarly to dihydrotanshinone (DHTS), a small molecule known to interfere with HuR- TNFα mRNA binding. The present findings demonstrated that VP12/14 and VP12/110 are innovative molecules with anti-inflammatory and anti-angiogenic properties, suggesting their potential use as novel candidates for treatment of diabetic retinopathy.


Asunto(s)
Proteína 1 Similar a ELAV/metabolismo , Células Endoteliales/metabolismo , Glucosa/toxicidad , Indoles/administración & dosificación , ARN Mensajero/metabolismo , Retina/metabolismo , Sitios de Unión/fisiología , Proteína 1 Similar a ELAV/química , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Glucosa/administración & dosificación , Humanos , Indoles/química , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Mensajero/química , Retina/efectos de los fármacos , Retina/patología
16.
Endocrine ; 61(3): 357-371, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29721802

RESUMEN

The microbiota is a complex ecosystem of microorganisms consisting of bacteria, viruses, protozoa, and fungi, living in different districts of the human body, such as the gastro-enteric tube, skin, mouth, respiratory system, and the vagina. Over 70% of the microbiota lives in the gastrointestinal tract in a mutually beneficial relationship with its host. The microbiota plays a major role in many metabolic functions, including modulation of glucose and lipid homeostasis, regulation of satiety, production of energy and vitamins. It exerts a role in the regulation of several biochemical and physiological mechanisms through the production of metabolites and substances. In addition, the microbiota has important anti-carcinogenetic and anti-inflammatory actions. There is growing evidence that any modification in the microbiota composition can lead to several diseases, including metabolic diseases, such as obesity and diabetes, and cardiovascular diseases. This is because alterations in the microbiota composition can cause insulin resistance, inflammation, vascular, and metabolic disorders. The causes of the microbiota alterations and the mechanisms by which microbiota modifications can act on the development of metabolic and cardiovascular diseases have been reported. Current and future preventive and therapeutic strategies to prevent these diseases by an adequate modulation of the microbiota have been also discussed.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Inflamación/microbiología , Resistencia a la Insulina/fisiología , Enfermedades Metabólicas/microbiología , Microbiota/fisiología , Humanos , Inflamación/metabolismo , Enfermedades Metabólicas/metabolismo
17.
Oxid Med Cell Longev ; 2018: 4956080, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29576851

RESUMEN

RNA-binding protein dysregulation and altered expression of proteins involved in the autophagy/proteasome pathway play a role in many neurodegenerative disease onset/progression, including age-related macular degeneration (AMD). HuR/ELAVL1 is a master regulator of gene expression in human physiopathology. In ARPE-19 cells exposed to the proteasomal inhibitor MG132, HuR positively affects at posttranscriptional level p62 expression, a stress response gene involved in protein aggregate clearance with a role in AMD. Here, we studied the early effects of the proautophagy AICAR + MG132 cotreatment on the HuR-p62 pathway. We treated ARPE-19 cells with Erk1/2, AMPK, p38MAPK, PKC, and JNK kinase inhibitors in the presence of AICAR + MG132 and evaluated HuR localization/phosphorylation and p62 expression. Two-hour AICAR + MG132 induces both HuR cytoplasmic translocation and threonine phosphorylation via the Erk1/2 pathway. In these conditions, p62 mRNA is loaded on polysomes and its translation in de novo protein is favored. Additionally, for the first time, we report that JNK can phosphorylate HuR, however, without modulating its localization. Our study supports HuR's role as an upstream regulator of p62 expression in ARPE-19 cells, helps to understand better the early events in response to a proautophagy stimulus, and suggests that modulation of the autophagy-regulating kinases as potential therapeutic targets for AMD may be relevant.


Asunto(s)
Proteína 1 Similar a ELAV/metabolismo , Sistema de Señalización de MAP Quinasas , Epitelio Pigmentado de la Retina/metabolismo , Proteína Sequestosoma-1/metabolismo , Autofagia/fisiología , Línea Celular , Humanos , MAP Quinasa Quinasa 4/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/enzimología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
J Colloid Interface Sci ; 505: 1055-1064, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28697545

RESUMEN

The synthesis of large pentatwinned five-branched gold nanostars (GNS) has been modified so to obtain overall dimensions shrunk to 60% and a lower branches aspect ratio, leading to a dramatic blue shift of their two near-infrared (NIR) localized surface plasmon resonances (LSPR) absorptions but still maintaining one LSPR in the biotransparent NIR range. The interactions of polyethylene glycol (PEG) coated large and shrunk GNS with SH-SY5Y cells revealed that the large ones (DCI - diameter of the circumference in which GNS can be inscribed=76nm) are internalized more efficiently than the shrunk ones (DCI=46nm), correlating with a decreased cells surviving fraction.


Asunto(s)
Oro/química , Nanopartículas del Metal/administración & dosificación , Neuroblastoma/patología , Polietilenglicoles/química , Supervivencia Celular , Nanopartículas del Metal/química , Neuroblastoma/tratamiento farmacológico , Resonancia por Plasmón de Superficie , Células Tumorales Cultivadas
19.
J Med Chem ; 60(20): 8257-8267, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-28587461

RESUMEN

RNA-binding proteins play a key role in post-transcriptional processes. Among these proteins, embryonic lethal abnormal vision (ELAV) proteins are among the best described. ELAV proteins predominantly act as positive regulators of gene expression, and their dysregulation is involved in several pathologies, such as cancer, inflammation, and neurodegenerative diseases. Only a few structurally unrelated compounds interfering with ELAV protein-mRNA complexes have been identified by applying high-throughput screening approaches. Considering the structural diversity of the compounds discovered so far and the different techniques employed for screening their ability to interfere with ELAV protein-mRNA complexes, drawing conclusions from structure-activity relationships remains a challenge. We performed docking studies to understand the interactions of compounds reported over the past decade to be inhibitors of ELAV proteins and to evaluate the potential of computer-aided drug design to target this family of proteins for further drug discovery.


Asunto(s)
Descubrimiento de Drogas , Proteína 1 Similar a ELAV/metabolismo , ARN/metabolismo , Diseño de Fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Unión Proteica , Relación Estructura-Actividad
20.
Clin Interv Aging ; 12: 325-333, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28228653

RESUMEN

PURPOSE: Correct drug prescription in the elderly is a difficult task that requires careful survey of the current pharmacological therapies. In this article, we reviewed the drug prescriptions provided to 860 persons aged 65 years or over, residing in a small city of Lombardy, Italy. METHODS: Subjects were recruited from a local nursing home, the Pavia and Vigevano Neuropsychological Center for Alzheimer's Disease, general practitioners' offices, and the local University of the Third Age. For each patient, the amount of potentially inappropriate prescriptions (PIPs), sedative and anticholinergic load (SL and AL, respectively), and drug-drug interactions were evaluated. RESULTS: Widespread polypharmacy, giving rise to 10.06% of PIPs in the whole collection of prescriptions, was observed. In particular, PIPs mainly concern drugs acting at the central nervous system level, mostly benzodiazepines and antipsychotics. Moreover, approximately one-fourth of the subjects had an elevated SL and approximately one-tenth a high AL. Drug-drug interactions were frequent (266 requiring medical attention), up to five for each single patient. Of concern was the underuse of antidementia drugs: only 20 patients received a cholinesterase inhibitor or memantine, although 183 patients were potentially suitable for this treatment. CONCLUSION: These results demonstrate the need to develop novel strategies aimed at improving the quality of drug prescription.


Asunto(s)
Prescripción Inadecuada/estadística & datos numéricos , Polifarmacia , Anciano , Anciano de 80 o más Años , Fármacos del Sistema Nervioso Central/administración & dosificación , Interacciones Farmacológicas , Femenino , Hogares para Ancianos , Humanos , Italia , Masculino , Casas de Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA