Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38880055

RESUMEN

Grape and grape derived products contain many bioactive phenolics which have a variety of impacts on health. Following oral ingestion, the phenolic compounds and their metabolites may be detectable in human urine. However, developing a reliable method for the analysis of phenolic compounds in urine is challenging. In this work, we developed and validated a new high-throughput, sensitive and reproducible analytical method for the simultaneous analysis of 31 grape phenolic compounds and metabolites using Oasis PRiME HLB cleanup for sample preparation combined with ultra-performance liquid chromatography with triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS). Using this new method, the accuracy achieved was 69.3 % ∼ 134.9 % (except for six compounds), and the recovery achieved was 52.4 % ∼ 134.7 % (except for two very polar compounds). For each of the 31 target analytes, the value of intra-day precision was less than 14.3 %. The value of inter-day precision was slightly higher than intra-day precision, with a range of 0.7 % ∼ 19.1 %. We report for the first time on the effect of gender and BMI on the accuracy and recovery of human urine samples, and results from analysis of variance (ANOVA), and principal component analysis (PCA) indicated there was no difference in the value of accuracy and recovery between different gender or BMI (>30) using our purposed cleanup and UHPLC-QqQ-MS/MS method. Overall, this newly developed method could serve as a powerful tool for analyzing grape phenolic compounds and metabolites in human urine samples.


Asunto(s)
Polifenoles , Espectrometría de Masas en Tándem , Vitis , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Vitis/química , Polifenoles/orina , Reproducibilidad de los Resultados , Masculino , Femenino , Modelos Lineales , Límite de Detección , Adulto , Ensayos Analíticos de Alto Rendimiento/métodos
2.
Mol Nutr Food Res ; 67(21): e2300156, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37439457

RESUMEN

SCOPE: The goal of this study is to investigate the effects of a bioactive dietary polyphenol preparation (BDPP), which is made up of grape-derived polyphenols, on microglial responses, as well as the underlying molecular mechanisms in depression and anxiety-like behaviors. METHODS AND RESULTS: The study finds that treatment with BDPP significantly decreases depression-like and anxiety-like behaviors induced by chronic stress in mice, while leaving their locomotor activity unaffected. The study also finds that BDPP treatment reverses microglia activation in the amygdala and hippocampal formation, regions of the brain involved in emotional regulation, from an amoeboid shape to ramified shape. Additionally, BDPP treatment modulates the release of pro-inflammatory cytokines such as interleukin-6 via high mobility box 1 protein and the receptor for advanced glycation end products (HMGB1-RAGE) signaling pathway in activated microglia induced by chronic stress. CONCLUSION: The findings suggest regional heterogeneity in microglial responses following chronic stress in subregions of the corticolimbic circuit. Specifically, activation of the immune-inflammatory HMGB1-RAGE pathway may provide a new avenue for preventing the manifestation of psychiatric impairments including stress-induced anxiety- and depression-like behavior, using bioactive and bioavailable polyphenols.


Asunto(s)
Depresión , Proteína HMGB1 , Ratones , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Microglía , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacología , Ansiedad/tratamiento farmacológico , Polifenoles/farmacología , Polifenoles/metabolismo
3.
bioRxiv ; 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37034623

RESUMEN

Scope: The goal of this study is to investigate the effects of a bioactive dietary polyphenol preparation (BDPP), which is made up of grape-derived polyphenols, on microglial responses, as well as the underlying molecular mechanisms in depression and anxiety-like behaviors. Methods and results: We find that treatment with BDPP significantly decreased depression-like and anxiety-like behaviors induced by chronic stress in mice, while leaving their locomotor activity unaffected. We also find that BDPP treatment reversed microglia activation in the amygdala and hippocampal formation, regions of the brain involved in emotional regulation, from an amoeboid shape to ramified shape. Additionally, BDPP treatment modulates the release of pro-inflammatory cytokines such as interleukin-6 via high mobility box 1 protein and the receptor for advanced glycation end products (HMGB1-RAGE) signaling pathway in activated microglia induced by chronic stress. Conclusion: Our findings suggest regional heterogeneity in microglial responses following chronic stress in subregions of the corticolimbic circuit. Specifically, activation of the immune-inflammatory HMGB1-RAGE pathway might provide a new avenue for therapeutic intervention in stress-induced anxiety- and depression-like behavior, using bioactive and bioavailable polyphenols.

4.
Front Nutr ; 8: 780260, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34901128

RESUMEN

Methods for a dissolution study by ultra-high performance liquid chromatography/triple quadrupole mass spectrometry (UHPLC-QqQ/MS) analysis of grape polyphenol dietary supplements, namely, grape seed extract (GSE) and resveratrol (RSV) capsules, were developed following the guidance of United States Pharmacopeia (USP) <2040>. Two dissolution media, 0.1 N hydrochloric acid (pH 1.2) and 0.05 M acetate buffer (pH 4.6), were evaluated with dissolution apparatus (USP 1), 100 rpm rotation speed, and 900 ml dissolution medium volume. Dissolution profiling was performed over 120 min. Major phenolic compounds of gallic acid, catechin, epicatechin, and procyanidin B2 were quantitated to obtain the dissolution profile of GSE capsules, and trans-RSV was used for RSV capsules. Results indicated that the released trans-RSV for RSV capsules in both of the dissolution media meets the USP standards, and that for the GSE capsules, all the four marker compounds passed the dissolution test in the HCl medium but did not reach a 75% release within 60 min in the acetate buffer. These promising results suggest that the general USP dissolution protocols are adequate for the successful release of RSV capsules in HCl medium and acetate buffer and GSE capsules (in HCl medium), but may be inadequate for GSE capsules in acetate buffer. These results showed that under a low pH of 1.2 (simulated stomach environment), bioactive compounds were released on time from the GSE capsules and met the USP guidelines; however, under a higher pH of 4.6 (simulated duodenum environment), the same biomarkers failed, suggesting the need to further improve the dissolution of GSE over a wider range of pH environments to enhance bioavailability and efficacy.

5.
Front Nutr ; 8: 780226, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34977124

RESUMEN

Bioactive dietary polyphenols in grape (Vitis vinifera) have been used in Dietary Supplements (DSs) with the aim to prevent numerous diseases, including cardiovascular and neurodegenerative diseases, and to reduce depression and anxiety. Given prior recognition that DSs can be quality challenged from the purity, authentication, adulteration, and actual concentration of targeted bioactives, to ensure consumer health protection as well as the quality and safety of grape polyphenol-based DSs, the present investigation was aimed at establishing a comprehensive quality control (QC) approach for grape polyphenol-based DSs in support of a human clinical study. In this study, the manufactured grape seed polyphenol extract (GSPE) and trans-resveratrol (RSV) capsules and Concord Grape Juice (CGJ) along with the corresponding original drug materials were analyzed using the developed different liquid chromatography/UV-visible spectroscopy/mass spectrometry (LC/UV-Vis/MS) methods. The weight variation of GSPE and RSV capsules was also evaluated according to the US Pharmacopeia (USP) tests. The results indicate that the total identified polyphenol content in each grape seed extract (GSE) capsule/CGJ is very similar and all GSE/RSV capsules pass the content/weight uniformity test. Given the complexity of these and many botanical products from the issues of purity, quality, adulteration, consistency, and their coupling to the complex chemistry in each grape-derived botanical, quality assurance and the steps needed to ensure grape-derived DSs being well homogeneous and stable and containing the known and expected bioactives at specific concentration ranges are fundamental to any research study and in particular to a clinical trial. Each of these issues is essential to provide a solid foundation upon which clinical trials with botanicals can be conducted with the goal of realizing measurable mental health outcomes such as reducing depression and anxiety as well as understanding of their underlying biological mechanisms.

6.
Front Neurosci ; 14: 398, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32431588

RESUMEN

Misfolding, aggregation and deposition of α-synuclein (α-syn) are major pathologic characteristics of Parkinson's disease (PD) and the related synucleinopathy, multiple system atrophy (MSA). The spread of α-syn pathology across brain regions is thought to play a key role in the onset and progression of clinical phenotypes. Thus, there is increasing interest in developing strategies that target and attenuate α-syn aggregation and spread. Recent studies of brain-penetrating polyphenolic acids, namely, 3-hydroxybenzoic acid (3-HBA), 3,4-dihydroxybenzoic acid (3,4-diHBA), and 3-(3-hydroxyphenyl)propionic acid (3-HPPA) that are derived from gut microbiota metabolism of dietary polyphenols, show in vitro ability to effectively modulate α-syn misfolding, oligomerization, and mediate aggregated α-syn neurotoxicity. Here we investigate whether 3-HBA, 4-hydroxybenzoic acid (4-HBA), 3,4-diHBA, or 3-HPPA interfere with α-syn spreading in a cell-based system. Using HEK293 cells overexpressing α-syn-A53T-CFP/YFP, we assessed α-syn seeding activity using Fluorescence Resonance Energy Transfer (FRET) to detect and quantify α-syn aggregation. We demonstrated that 3-HPPA, 3,4-diHBA, 3-HBA, and 4-HBA significantly attenuated intracellular α-syn seeding aggregation. To determine whether our compounds could inhibit brain-derived seeding activity, we utilized insoluble α-syn extracted from post-mortem MSA or PD brain specimens. We found that 3-HPPA effectively attenuated MSA-induced aggregation of monomer into high molecular weight aggregates capable of inducing intracellular aggregation. Outcomes from our studies suggest interactions between gut microbiome and certain dietary factors may form the basis for effective therapies that modulate pathologic α-syn propagation. Collectively, our findings provide the basis for future developments of probiotic, prebiotic, or synbiotic approaches for modulating the onset and/or progression of α-synucleinopathies.

7.
Molecules ; 25(10)2020 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-32456274

RESUMEN

The aggregation and deposition of α-synuclein (αS) are major pathologic features of Parkinson's disease, dementia with Lewy bodies, and other α-synucleinopathies. The propagation of αS pathology in the brain plays a key role in the onset and progression of clinical phenotypes. Thus, there is increasing interest in developing strategies that attenuate αS aggregation and propagation. Based on cumulative evidence that αS oligomers are neurotoxic and critical species in the pathogenesis of α-synucleinopathies, we and other groups reported that phenolic compounds inhibit αS aggregation including oligomerization, thereby ameliorating αS oligomer-induced cellular and synaptic toxicities. Heterogeneity in gut microbiota may influence the efficacy of dietary polyphenol metabolism. Our recent studies on the brain-penetrating polyphenolic acids 3-hydroxybenzoic acid (3-HBA), 3,4-dihydroxybenzoic acid (3,4-diHBA), and 3-hydroxyphenylacetic acid (3-HPPA), which are derived from gut microbiota-based metabolism of dietary polyphenols, demonstrated an in vitro ability to inhibit αS oligomerization and mediate aggregated αS-induced neurotoxicity. Additionally, 3-HPPA, 3,4-diHBA, 3-HBA, and 4-hydroxybenzoic acid significantly attenuated intracellular αS seeding aggregation in a cell-based system. This review focuses on recent research developments regarding neuroprotective properties, especially anti-αS aggregation effects, of phenolic compounds and their metabolites by the gut microbiome, including our findings in the pathogenesis of α-synucleinopathies.


Asunto(s)
Enfermedad por Cuerpos de Lewy/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico , Fenoles/uso terapéutico , alfa-Sinucleína/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Humanos , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Fenoles/química , Agregación Patológica de Proteínas/prevención & control , Sinucleinopatías/patología , Sinucleinopatías/prevención & control
8.
Expert Rev Neurother ; 20(7): 673-686, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32459513

RESUMEN

INTRODUCTION: Age related neurodegenerative disorders affect millions of people around the world. The role of the gut microbiome (GM) in neurodegenerative disorders has been elucidated over the past few years. Dysbiosis of the gut microbiome ultimately results in neurodegeneration. However, the gut microbiome can be modulated to promote neuro-resilience. AREAS COVERED: This review is focused on demonstrating the role of the gut microbiome in host physiology in Parkinson's disease (PD) and other neurodegenerative disorders. We will discuss how the microbiome will impact neurodegeneration in PD, Alzheimer's Disease (AD), Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), and finally discuss how the gut microbiome can be influenced through diet and lifestyle. EXPERT OPINION: Currently, much of the focus has been to study the mechanisms by which the microbiome induces neuroinflammation and neurodegeneration in PD, AD, MS, ALS. In particular, the role of certain dietary flavonoids in regulation of gut microbiome to promote neuro-resilience. Polyphenol prebiotics delivered in combination with probiotics (synbiotics) present an exciting new avenue to harness the microbiome to attenuate immune inflammatory responses which ultimately may influence brain cascades associated with promotion of neurodegeneration across the lifespan.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Probióticos/uso terapéutico , Disbiosis/complicaciones , Disbiosis/dietoterapia , Disbiosis/microbiología , Humanos , Enfermedades Neurodegenerativas/dietoterapia , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/microbiología
10.
PLoS One ; 14(10): e0223435, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31577822

RESUMEN

Developing effective therapies for back pain associated with intervertebral disc (IVD) degeneration is a research priority since it is a major socioeconomic burden and current conservative and surgical treatments have limited success. Polyphenols are naturally occurring compounds in plant-derived foods and beverages, and evidence suggests dietary supplementation with select polyphenol preparations can modulate diverse neurological and painful disorders. This study tested whether supplementation with a select standardized Bioactive-Dietary-Polyphenol-Preparation (BDPP) may alleviate pain symptoms associated with IVD degeneration. Painful IVD degeneration was surgically induced in skeletally-mature rats by intradiscal saline injection into three consecutive lumbar IVDs. Injured rats were given normal or BDPP-supplemented drinking water. In-vivo hindpaw mechanical allodynia and IVD height were assessed weekly for 6 weeks following injury. Spinal column, dorsal-root-ganglion (DRG) and serum were collected at 1 and 6 weeks post-operative (post-op) for analyses of IVD-related mechanical and biological pathogenic processes. Dietary BDPP significantly alleviated the typical behavioral sensitivity associated with surgical procedures and IVD degeneration, but did not modulate IVD degeneration nor changes of pro-inflammatory cytokine levels in IVD. Gene expression analyses suggested BDPP might have an immunomodulatory effect in attenuating the expression of pro-inflammatory cytokines in DRGs. This study supports the idea that dietary supplementation with BDPP has potential to alleviate IVD degeneration-related pain, and further investigations are warranted to identify the mechanisms of action of dietary BDPP.


Asunto(s)
Dolor de Espalda/etiología , Suplementos Dietéticos , Degeneración del Disco Intervertebral/complicaciones , Manejo del Dolor , Polifenoles/administración & dosificación , Animales , Dolor de Espalda/diagnóstico , Dolor de Espalda/tratamiento farmacológico , Dolor de Espalda/fisiopatología , Conducta Animal , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Mediadores de Inflamación/metabolismo , Dolor de la Región Lumbar/diagnóstico , Dolor de la Región Lumbar/tratamiento farmacológico , Dolor de la Región Lumbar/etiología , Dolor de la Región Lumbar/fisiopatología , Masculino , Manejo del Dolor/métodos , Dimensión del Dolor , Radiografía , Ratas
11.
ACS Omega ; 4(5): 8222-8330, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31236526

RESUMEN

Bioactive dietary polyphenols have health benefits against a variety of disorders, but some benefits of polyphenols may be not directly related to them, but rather to their metabolites. Recently, we have identified the brain-available phenol glucuronide metabolite deoxyrhapontigenin-3-O-ß-D-glucuronide (5) in perfused rat brains following sub-acute treatment with the stilbene resveratrol (1). However, the role of such a metabolite in the neuroprotective activity of resveratrol (1) is not understood, in part due to the non-commercial availability of 5 for performing biological evaluation in animal models of Alzheimer's disease or other neurological disorders. Here, we describe a concise chemical synthesis of deoxyrhapontigenin-3-O-ß-D-glucuronide (5) and its precursor, 4-O-Me-resveratrol (2), accomplished in 4 and 6 steps with 74% and 21% overall yields, respectively, starting from commercially available 3,5-dihydroxybenzaldehyde. Pivotal reactions employed in the synthesis include the palladium-catalyzed C-C coupling between 3,5-di-tert-butyldiphenylsilyloxystyrene and p-iodoanisole in the presence of tributylamine and the acid-catalysed glucuronidation between the trichloroacetimidate-activated glucuronic acid and 4-O-Me-resveratrol.

12.
Ann N Y Acad Sci ; 1455(1): 196-205, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31074515

RESUMEN

Recent studies suggest that bioactive dietary polyphenol preparation (BDPP) and individual polyphenolic compounds ameliorate stress-induced depression-like behaviors, but the underlying molecular mechanisms are incompletely understood. VGF (non-acronymic) in the dorsal hippocampus (dHc) has been shown to play a role in depression-like behaviors and antidepressant efficacy, and the VGF-derived peptide TLQP-62 (named by the N-terminal 4 amino acids and length) infused into dHc has been shown to have antidepressant efficacy that is BDNF-TrkB dependent. Here, we investigated whether BDPP influences VGF expression in the dHc, and whether dHc VGF is required for BDPP antidepressant efficacy. We found that BDPP produced antidepressant-like effects in naive mice and reversed the depression-like behaviors induced by chronic variable stress. In addition, we found that BDPP had no detectable antidepressant efficacy in floxed mice with prior knockdown in the dHc of either VGF or BDNF, achieved by adeno-associated virus-Cre infusion. Our data indicate that dHc VGF and BDNF expression are required for the antidepressant actions of BDPP, and therefore suggest that a VGF(TLQP-62)-BDNF-TrkB autoregulatory feedback loop could play a role in the regulation of BDPP antidepressant efficacy, much as it has been suggested to function in the antidepressant efficacies of ketamine and TLQP-62.


Asunto(s)
Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Polifenoles/farmacología , Vitis/fisiología , Animales , Masculino , Ratones
13.
Sci Rep ; 9(1): 3546, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837576

RESUMEN

Dietary polyphenols promote memory in models of sleep deprivation (SD), stress, and neurodegeneration. The biological properties of dietary polyphenols greatly depend upon the bioavailability of their phenolic metabolites derivatives, which are modulated by gut microbiota. We recently demonstrated that supplementation with grape-derived bioactive dietary polyphenol preparation (BDPP) improves SD-induced cognitive impairment. This study examined the role of the gut microbiota in the ability of BDPP to prevent memory impairment in response to SD. C57BL6/J mice, treated with antibiotics mix (ABX) or BDPP or both, were sleep-deprived at the end of a fear conditioning training session and fear memory was assessed the next day. Gut microbiota composition was analyzed in fecal samples and BDPP-driven phenolic acid metabolites extraction was measured in plasma. We report that the beneficial effect of BDPP on memory in SD is attenuated by ABX-induced dysbiosis. We identified specific communities of fecal microbiota that are associated with the bioavailability of BDPP-derived phenolic acids, which in turn, are associated with memory promotion. These results suggest the gut microbiota composition significantly affects the bioavailability of phenolic acids that drive the dietary polyphenols' cognitive resilience property. Our findings provide a preclinical model with which to test the causal association of gut microbiota-polyphenols, with the ultimate goal of potential developing dietary polyphenols for the prevention/treatment of cognitive impairment.


Asunto(s)
Cognición/efectos de los fármacos , Dieta , Microbioma Gastrointestinal , Hidroxibenzoatos/farmacocinética , Polifenoles/farmacología , Animales , Disponibilidad Biológica , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL
14.
J Nutr Biochem ; 64: 170-181, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30530257

RESUMEN

The intestinal microbiota actively converts dietary flavanols into phenolic acids, some of which are bioavailable in vivo and may promote resilience to select neurological disorders by interfering with key pathologic mechanisms. Since every person harbors a unique set of gut bacteria, we investigated the influence of the gut microbiota's interpersonal heterogeneity on the production and bioavailability of flavonoid metabolites that may interfere with the misfolding of alpha (α)-synuclein, a process that plays a central role in Parkinson's disease and other α-synucleinopathies. We generated two experimental groups of humanized gnotobiotic mice with compositionally diverse gut bacteria and orally treated the mice with a flavanol-rich preparation (FRP). The two gnotobiotic mouse groups exhibited distinct differences in the generation and bioavailability of FRP-derived microbial phenolic acid metabolites that have bioactivity towards interfering with α-synuclein misfolding or inflammation. We also demonstrated that these bioactive phenolic acids are effective in modulating the development and progression of motor dysfunction in a Drosophila model of α-synucleinopathy. Lastly, through in vitro bacterial fermentation studies, we identified select bacteria that are capable of supporting the generation of these bioavailable and bioactive phenolic acids. Outcomes from our studies provide a better understanding of how interpersonal heterogeneity in the gut microbiota differentially modulates the efficacy of dietary flavanols to protect against select pathologic mechanisms. Collectively, our findings provide the basis for future developments of probiotic, prebiotic, or synbiotic approaches for modulating the onset and/or progression of α-synucleinopathies and other neurological disorders involving protein misfolding and/or inflammation.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Polifenoles/farmacocinética , Sinucleinopatías/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidad , Animales , Animales Modificados Genéticamente , Disponibilidad Biológica , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Drosophila , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Polifenoles/metabolismo , Agregación Patológica de Proteínas/metabolismo , Pliegue de Proteína , Organismos Libres de Patógenos Específicos , Sinucleinopatías/patología , alfa-Sinucleína/química , alfa-Sinucleína/genética
15.
Commun Biol ; 1: 42, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271926

RESUMEN

Grape-derived polyphenols have been investigated for their role in promoting memory in model systems of stress, but little is known about select subpopulations of neurons that are influenced by polyphenols to improve memory performance. Granule neurons in the hippocampal dentate gyrus are vulnerable to stressors that impair contextual memory function and can be influenced by dietary polyphenols. We utilized a c-fos-tTA/TRE-ChR2 optogenetics model in which neurons activated during fear learning are labeled with ChR2-mCherry and can be optically reactivated in a different context to recapitulate the behavioral output of a related memory. Treatment with dietary polyphenols increased fear memory recall and ChR2-mCherry expression in dentate gyrus neurons, suggesting that dietary polyphenols promote recruitment of neurons to a fear memory engram. We show that dietary polyphenols promote memory function and offer a general method to map cellular subpopulations influenced by dietary polyphenols, in part through the mechanism of c-Fos expression enhancement.

16.
Artículo en Inglés | MEDLINE | ID: mdl-30241072

RESUMEN

Accumulating evidence indicates that the health impact of dietary phenolic compounds, including the principal grape-derived polyphenols, (+)­catechin and (-)­epicatechin, is exerted by not only the parent compounds but also their phenolic metabolites generated by the gut microbiota. In this work, a new high-throughput, sensitive and reproducible analytical method was developed employing ultra-high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS) for the simultaneous analysis of 16 microbial-generated phenolic acid metabolites (PAMs) along with their precursors, catechin and epicatechin. Following optimizing the solvent system, LC conditions and MS parameters, method validation was carried out to evaluate the sensitivity, selectivity, accuracy and precision of the proposed method, and to ensure promising recovery of all analytes extracted from the matrix prior to bioanalysis. Results showed that the optimized analytical method allowed successful confirmation and quantitation of all analytes under dynamic multiple reaction monitoring mode using trans­cinnamic acid­d7 as an internal standard (I.S.). Excellent sensitivity and linearity were obtained for all analytes, with lower limits of detection (LLODs) and lower limits of quantification (LLOQs) in the ranges of 0.225-2.053 ng/mL and 0.698-8.116 ng/mL, respectively. By examining blank matrix spiked with standard mixture at different concentration levels, promising recoveries at two spiking levels (low level, 91.2-115%; high level 90.2-121%), and excellent precision (RSD < 10%) were obtained. This method was then successfully applied to an in vitro study where catechin/epicatechin-enriched broth samples were anaerobically fermented with gut microbes procured from healthy human donors. All sources of bacteria employed showed remarkable activity in metabolizing grape polyphenols and distinct variations in the production of PAMs. The successful application of this method in the in vitro fermentation assays demonstrates its suitability for high-throughput analysis of polyphenol metabolites, particularly catechin/epicatechin-derived PAMs, in biological studies.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Polifenoles/análisis , Espectrometría de Masas en Tándem/métodos , Vitis/química , Vitis/microbiología , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados
17.
Front Pharmacol ; 9: 867, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30210334

RESUMEN

Neurodegenerative disorders constitute a group of multifaceted conditions characterized by the progressive loss of neurons and synaptic connections consequent to a combination of specific genetic predispositions and stochastic stressors. The neuropathologies observed in both Alzheimer's and Parkinson's disease are in part attributed to compounding intrinsic and extrinsic environmental stressors, which we propose may be limited by the administration of specific grape derived phytochemicals and their metabolized derivatives, specifically polyphenols isolated from grape botanicals. Current therapies for neurodegenerative disorders are limited as they solely target the final disease pathologies including behavioral changes, cognitive deficits, proteinopathies and neuronal loss; however, this strategy is not a sustainable approach toward managing disease onset or progression. This review discusses the application of grape derived polyphenols as an adjunctive treatment paradigm for the prevention of neuropathologies associated with Alzheimer's disease, Parkinson's disease and Chronic Traumatic Encephalopathy by simultaneously ameliorating two stochastic stressors that facilitate their disease pathologies: inflammation and oxidative stress. The biophysical attributes of grape-derived polyphenols buffer against redox potential dependent peripheral and neuroinflammation and down regulate the activation of inflammasomes in microglia and astrocytes, which could provide a novel mechanism through which grape-derived polyphenols simultaneously suppress risk factors across pathologically distinct neurodegenerative conditions. This approach therefore offers a prophylactic mode, not feasible through current pharmacological agents, to target activity dependent risk factors for neurodegenerative disorders that manifest over an individual's lifetime.

18.
J Pharm Biomed Anal ; 159: 374-383, 2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-30032004

RESUMEN

Grape-derived products contain a wide array of bioactive phenolic compounds which are of significant interest to consumers and researchers for their multiple health benefits. The majority of bioavailable grape polyphenols, including the most abundant flavan-3-ols, i.e. (+)-catechin and (-)-epicatechin, undergo extensive microbial metabolism in the gut, forming metabolites that can be highly bioavailable and bioactive. To gain a better understanding in microbial metabolism of grape polyphenols and to identify bioactive metabolites, advanced analytical methods are needed to accurately quantitate microbial-derived metabolites, particularly at trace levels, in addition to their precursors. This work describes the development and validation of a high-throughput, sensitive and reproducible GC-QqQ/MS method operated under MRM mode that allowed the identification and quantification of 16 phenolic acid metabolites, along with (+)-catechin and (-)-epicatechin, in flavanol-enriched broth samples anaerobically fermented with human intestinal bacteria. Excellent sensitivity was achieved with low limits of detection and low limits of quantification in the range of 0.24-6.18 ng/mL and 0.480-12.37 ng/mL, respectively. With the exception of hippuric acid, recoveries of most analytes were greater than 85%. The percent accuracies for almost all analytes were within ±23% and precision results were all below 18%. Application of the developed method to in vitro samples fermented with different human gut microbiota revealed distinct variations in the extent of flavanol catabolism, as well as production of bioactive phenolic acid metabolites. These results support that intestinal microbiota have a significant impact on the production of flavanol metabolites. The successful application of the established method demonstrates its applicability and robustness for analysis of grape flavanols and their microbial metabolites in biological samples.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Hidroxibenzoatos/metabolismo , Mucosa Intestinal/metabolismo , Polifenoles/análisis , Polifenoles/metabolismo , Vitis/química , Disponibilidad Biológica , Catequina/análisis , Humanos , Intestinos/microbiología , Límite de Detección , Microbiota
19.
FASEB J ; 32(10): 5390-5404, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29702026

RESUMEN

Previous evidence has suggested that dietary supplementation with a bioactive dietary polyphenol preparation (BDPP) rescues impairment of hippocampus-dependent memory in a mouse model of sleep deprivation (SD). In the current study, we extend our previous evidence and demonstrate that a mechanism by which dietary BDPP protects against SD-mediated cognitive impairment is via mechanisms that involve phosphorylation of the mammalian target of rapamycin complex 1 and its direct downstream targets, including the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) and the ribosomal protein S6 kinase ß-1 (p70S6K). In additional mechanistic studies in vitro, we identified the brain bioavailable phenolic metabolites derived from the metabolism of dietary BDPP that are responsible for the attenuation of SD-mediated memory impairments. On the basis of high-throughput bioavailability studies of brain bioavailable metabolites after dietary BDPP treatment, we found that select polyphenol metabolites [ e.g., cyanidin-3'- O-glucoside and 3-(3'-hydroxyphenyl) propionic acid] were able to rescue mTOR and p70S6K phosphorylation in primary cortico-hippocampal neuronal cultures, as well as rescue 4E-BP1 phosphorylation in response to treatment with 4EGI-1, a specific inhibitor of eIF4E-eIF4G interaction. Our findings reveal a previously unknown role for dietary polyphenols in the rescue of SD-mediated memory impairments via mechanisms involving the promotion of protein translation.-Frolinger, T., Smith, C., Cobo, C. F., Sims, S., Brathwaite, J., de Boer, S., Huang, J., Pasinetti, G. M. Dietary polyphenols promote resilience against sleep deprivation-induced cognitive impairment by activating protein translation.


Asunto(s)
Disfunción Cognitiva , Hipocampo , Neuronas , Polifenoles/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Privación de Sueño , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Factor 4E Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación , Hipocampo/metabolismo , Hipocampo/patología , Ratones , Neuronas/metabolismo , Neuronas/patología , Fosfoproteínas/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Privación de Sueño/tratamiento farmacológico , Privación de Sueño/metabolismo , Privación de Sueño/patología
20.
Nat Commun ; 9(1): 477, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29396460

RESUMEN

Major depressive disorder is associated with abnormalities in the brain and the immune system. Chronic stress in animals showed that epigenetic and inflammatory mechanisms play important roles in mediating resilience and susceptibility to depression. Here, through a high-throughput screening, we identify two phytochemicals, dihydrocaffeic acid (DHCA) and malvidin-3'-O-glucoside (Mal-gluc) that are effective in promoting resilience against stress by modulating brain synaptic plasticity and peripheral inflammation. DHCA/Mal-gluc also significantly reduces depression-like phenotypes in a mouse model of increased systemic inflammation induced by transplantation of hematopoietic progenitor cells from stress-susceptible mice. DHCA reduces pro-inflammatory interleukin 6 (IL-6) generations by inhibiting DNA methylation at the CpG-rich IL-6 sequences introns 1 and 3, while Mal-gluc modulates synaptic plasticity by increasing histone acetylation of the regulatory sequences of the Rac1 gene. Peripheral inflammation and synaptic maladaptation are in line with newly hypothesized clinical intervention targets for depression that are not addressed by currently available antidepressants.


Asunto(s)
Antocianinas/farmacología , Ácidos Cafeicos/farmacología , Epigénesis Genética , Glucósidos/farmacología , Inflamación/genética , Plasticidad Neuronal/genética , Estrés Psicológico/genética , Animales , Antocianinas/administración & dosificación , Ácidos Cafeicos/administración & dosificación , Islas de CpG/efectos de los fármacos , Depresión/tratamiento farmacológico , Evaluación Preclínica de Medicamentos/métodos , Glucósidos/administración & dosificación , Interleucina-6/antagonistas & inhibidores , Interleucina-6/genética , Antígenos Comunes de Leucocito/genética , Masculino , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Neuropéptidos/genética , Neuropéptidos/metabolismo , Polifenoles/farmacología , Conducta Social , Estrés Psicológico/tratamiento farmacológico , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA