Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 7(6): 3731-3745, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38842103

RESUMEN

Photosensitizing agents have received increased attention from the medical community, owing to their higher photothermal efficiency, induction of hyperthermia, and sustained delivery of bioactive molecules to their targets. Micro/nanorobots can be used as ideal photosensitizing agents by utilizing various physical stimuli for the targeted killing of pathogens (e.g., bacteria) and cancer cells. Herein, we report sunflower-pollen-inspired spiky zinc oxide (s-ZnO)-based nanorobots that effectively kill bacteria and cancer cells under near-infrared (NIR) light irradiation. The as-fabricated s-ZnO was modified with a catechol-containing photothermal agent, polydopamine (PDA), to improve its NIR-responsive properties, followed by the addition of antimicrobial (e.g., tetracycline/TCN) and anticancer (e.g., doxorubicin/DOX) drugs. The fabricated s-ZnO/PDA@Drug nanobots exhibited unique locomotory behavior with an average speed ranging from 13 to 14 µm/s under 2.0 W/cm2 NIR light irradiation. Moreover, the s-ZnO/PDA@TCN nanobots exhibited superior antibacterial activity against E. coli and S. epidermidis under NIR irradiation. The s-ZnO/PDA@DOX nanobots also displayed sufficient reactive oxygen species (ROS) amplification in B16F10 melanoma cells and induced apoptosis under NIR light, indicating their therapeutic efficacy. We hope the sunflower pollen-inspired s-ZnO nanorobots have tremendous potential in biomedical engineering from the phototherapy perspective, with the hope to reduce pathogen infections.


Asunto(s)
Antibacterianos , Antineoplásicos , Materiales Biocompatibles , Ensayos de Selección de Medicamentos Antitumorales , Helianthus , Tamaño de la Partícula , Fármacos Fotosensibilizantes , Óxido de Zinc , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Helianthus/química , Antineoplásicos/farmacología , Antineoplásicos/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Óxido de Zinc/química , Óxido de Zinc/farmacología , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Polen/química , Escherichia coli/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral , Indoles/química , Indoles/farmacología , Animales , Ratones , Doxorrubicina/farmacología , Doxorrubicina/química , Rayos Infrarrojos
2.
Adv Healthc Mater ; 13(12): e2304114, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38295299

RESUMEN

The skin serves as the body's outermost barrier and is the largest organ, providing protection not only to the body but also to various internal organs. Owing to continuous exposure to various external factors, it is susceptible to damage that can range from simple to severe, including serious types of wounds such as burns or chronic wounds. Macrophages play a crucial role in the entire wound-healing process and contribute significantly to skin regeneration. Initially, M1 macrophages infiltrate to phagocytose bacteria, debris, and dead cells in fresh wounds. As tissue repair is activated, M2 macrophages are promoted, reducing inflammation and facilitating restoration of the dermis and epidermis to regenerate the tissue. This suggests that extracellular matrix (ECM) promotes cell adhesion, proliferation, migrationand macrophage polarization. Among the numerous strategies, electrospinning is a versatile technique for obtaining ECM-mimicking structures with anisotropic and isotropic topologies of micro/nanofibers. Various electrospun biomaterials influence macrophage polarization based on their isotropic or anisotropic topologies. Moreover, these fibers possess a high surface-area-to-volume ratio, promoting the effective exchange of vital nutrients and oxygen, which are crucial for cell viability and tissue regeneration. Micro/nanofibers with diverse physical and chemical properties can be tailored to polarize macrophages toward skin regeneration and wound healing, depending on specific requirements. This review describes the significance of micro/nanostructures for activating macrophages and promoting wound healing.


Asunto(s)
Matriz Extracelular , Macrófagos , Nanofibras , Cicatrización de Heridas , Nanofibras/química , Cicatrización de Heridas/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Humanos , Animales , Anisotropía , Polaridad Celular/efectos de los fármacos , Piel/lesiones , Piel/metabolismo
3.
Adv Healthc Mater ; 13(4): e2302394, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37950552

RESUMEN

Conductive hydrogels (CHs) are promising alternatives for electrical stimulation of cells and tissues in biomedical engineering. Wound healing and immunomodulation are complex processes that involve multiple cell types and signaling pathways. 3D printable conductive hydrogels have emerged as an innovative approach to promote wound healing and modulate immune responses. CHs can facilitate electrical and mechanical stimuli, which can be beneficial for altering cellular metabolism and enhancing the efficiency of the delivery of therapeutic molecules. This review summarizes the recent advances in 3D printable conductive hydrogels for wound healing and their effect on macrophage polarization. This report also discusses the properties of various conductive materials that can be used to fabricate hydrogels to stimulate immune responses. Furthermore, this review highlights the challenges and limitations of using 3D printable CHs for future material discovery. Overall, 3D printable conductive hydrogels hold excellent potential for accelerating wound healing and immune responses, which can lead to the development of new therapeutic strategies for skin and immune-related diseases.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Hidrogeles/farmacología , Conductividad Eléctrica , Cicatrización de Heridas , Macrófagos
4.
Adv Healthc Mater ; 12(11): e2202163, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36637340

RESUMEN

Biomimetic soft hydrogels used in bone tissue engineering frequently produce unsatisfactory outcomes. Here, it is investigated how human bone-marrow-derived mesenchymal stem cells (hBMSCs) differentiated into early osteoblasts on remarkably soft 3D hydrogel (70 ± 0.00049 Pa). Specifically, hBMSCs seeded onto cellulose nanocrystals incorporated methacrylate gelatin hydrogels are subjected to pulsatile pressure stimulation (PPS) of 5-20 kPa for 7 days. The PPS stimulates cellular processes such as mechanotransduction, cytoskeletal distribution, prohibition of oxidative stress, calcium homeostasis, osteogenic marker gene expression, and osteo-specific cytokine secretions in hBMSCs on soft substrates. The involvement of Piezo 1 is the main ion channel involved in mechanotransduction. Additionally, RNA-sequencing results reveal differential gene expression concerning osteogenic differentiation, bone mineralization, ion channel activity, and focal adhesion. These findings suggest a practical and highly scalable method for promoting stem cell commitment to osteogenesis on soft matrices for clinical reconstruction.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , Osteogénesis , Humanos , Células Cultivadas , Hidrogeles/química , Células Madre Mesenquimatosas/fisiología , Impresión Tridimensional , Transcriptoma
5.
Biomaterials ; 294: 121999, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36669301

RESUMEN

In recent years, three-dimensional (3D) bioprinting of conductive hydrogels has made significant progress in the fabrication of high-resolution biomimetic structures with gradual complexity. However, the lack of an effective cross-linking strategy, ideal shear-thinning, appropriate yield strength, and higher print fidelity with excellent biofunctionality remains a challenge for developing cell-laden constructs, hindering the progress of extrusion-based 3D printing of conductive polymers. In this study, a highly stable and conductive bioink was developed based on polypyrrole-grafted gelatin methacryloyl (GelMA-PPy) with a triple cross-linking (thermo-photo-ionically) strategy for direct ink writing-based 3D printing applications. The triple-cross-linked hydrogel with dynamic semi-inner penetrating polymer network (semi-IPN) displayed excellent shear-thinning properties, with improved shape fidelity and structural stability during 3D printing. The as-fabricated hydrogel ink also exhibited "plug-like non-Newtonian" flow behavior with minimal disturbance. The bioprinted GelMA-PPy-Fe hydrogel showed higher cytocompatibility (93%) of human bone mesenchymal stem cells (hBMSCs) under microcurrent stimulation (250 mV/20 min/day). Moreover, the self-supporting and tunable mechanical properties of the GelMA-PPy bioink allowed 3D printing of high-resolution biological architectures. As a proof of concept, we printed a full-thickness rat bone model to demonstrate the structural stability. Transcriptomic analysis revealed that the 3D bioprinted hBMSCs highly expressed gene hallmarks for NOTCH/mitogen-activated protein kinase (MAPK)/SMAD signaling while down-regulating the Wnt/ß-Catenin and epigenetic signaling pathways during osteogenic differentiation for up to 7 days. These results suggest that the developed GelMA-PPy bioink is highly stable and non-toxic to hBMSCs and can serve as a promising platform for bone tissue engineering applications.


Asunto(s)
Bioimpresión , Hidrogeles , Ratas , Animales , Humanos , Hidrogeles/química , Polímeros , Osteogénesis , Pirroles , Bioimpresión/métodos , Gelatina/química , Ingeniería de Tejidos/métodos , Impresión Tridimensional , Andamios del Tejido/química
6.
Carbohydr Polym ; 303: 120464, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36657847

RESUMEN

Nanocellulose application has been increasing owing to its appealing physicochemical properties. Monitoring of the crystallinity, surface topography, and reactivity of this high-aspect-ratio nanomaterial is crucial for efficient tissue engineering. Controlling macrophage polarization phenotype remains a challenge in regenerative medicine and tissue engineering. Herein, we monitored the effects of shape-regulated (rod and spherical) nanocellulose on the macrophage modulatory potential of RAW 246.7 cells in vitro. Spherical nanocellulose (s-NC) exhibited higher thermal stability and biocompatibility than rod nanocellulose. Macrophage polarization was profoundly affected by nanocellulose topography and incubation period. M2 polarization was observed in vitro after 1 day of treatment with s-NC, followed by M1 polarization after treatment for longer periods. Transcriptome analysis similarly revealed that M1 polarization was dominant after 1 day h of incubation with both nanocellulose types. These findings demonstrate that macrophage polarization can be controlled by selecting suitable nanocellulose shape and incubation time for desired applications.


Asunto(s)
Nanosferas , Nanoestructuras , Celulosa/farmacología , Celulosa/química , Nanoestructuras/química , Macrófagos , Ingeniería de Tejidos
7.
Molecules ; 26(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068529

RESUMEN

Graphene is a two-dimensional sp2 hybridized carbon material that has attracted tremendous attention for its stimuli-responsive applications, owing to its high surface area and excellent electrical, optical, thermal, and mechanical properties. The physicochemical properties of graphene can be tuned by surface functionalization. The biomedical field pays special attention to stimuli-responsive materials due to their responsive abilities under different conditions. Stimuli-responsive materials exhibit great potential in changing their behavior upon exposure to external or internal factors, such as pH, light, electric field, magnetic field, and temperature. Graphene-based materials, particularly graphene oxide (GO), have been widely used in stimuli-responsive applications due to their superior biocompatibility compared to other forms of graphene. GO has been commonly utilized in tissue engineering, bioimaging, biosensing, cancer therapy, and drug delivery. GO-based stimuli-responsive platforms for wound healing applications have not yet been fully explored. This review describes the effects of different stimuli-responsive factors, such as pH, light, temperature, and magnetic and electric fields on GO-based materials and their applications. The wound healing applications of GO-based materials is extensively discussed with cancer therapy and drug delivery.


Asunto(s)
Tecnología Biomédica , Grafito/química , Animales , Biopelículas , Sistemas de Liberación de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA