Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Stem Cell Reports ; 16(6): 1409-1415, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34048695

RESUMEN

The newly revised 2021 ISSCR Guidelines for Stem Cell Research and Clinical Translation includes scientific and ethical guidance for the transfer of human pluripotent stem cells and their direct derivatives into animal models. In this white paper, the ISSCR subcommittee that drafted these guidelines for research involving the use of nonhuman embryos and postnatal animals explains and summarizes their recommendations.


Asunto(s)
Quimera , Investigaciones con Embriones/ética , Células Madre Pluripotentes , Guías de Práctica Clínica como Asunto , Sociedades Científicas/normas , Investigación con Células Madre/ética , Trasplante de Células Madre/normas , Animales , Humanos , Sociedades Científicas/ética , Trasplante de Células Madre/ética
2.
Nat Commun ; 7: 11208, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27052461

RESUMEN

The production of megakaryocytes (MKs)--the precursors of blood platelets--from human pluripotent stem cells (hPSCs) offers exciting clinical opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chemically defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 10(5) mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as 1 million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufacturing practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro production of platelets for transfusion and basic research in MK and platelet biology.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Reprogramación Celular , Factor de Transcripción GATA1/genética , Megacariocitos/citología , Células Madre Pluripotentes/citología , Proteína Proto-Oncogénica c-fli-1/genética , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Plaquetas/citología , Plaquetas/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Proliferación Celular , Criopreservación/métodos , Factor de Transcripción GATA1/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Lentivirus/genética , Megacariocitos/metabolismo , Análisis por Micromatrices , Células Madre Pluripotentes/metabolismo , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Proteína 1 de la Leucemia Linfocítica T Aguda , Transducción Genética , Transgenes
3.
Methods Mol Biol ; 1357: 23-31, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25687300

RESUMEN

This protocol describes the efficient isolation of peripheral blood mononuclear cells from circulating blood via density gradient centrifugation and subsequent generation of integration-free human induced pluripotent stem cells. Peripheral blood mononuclear cells are cultured for 9 days to allow expansion of the erythroblast population. The erythroblasts are then used to derive human induced pluripotent stem cells using Sendai viral vectors, each expressing one of the four reprogramming factors Oct4, Sox2, Klf4, and c-Myc.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Técnicas de Reprogramación Celular/métodos , Reprogramación Celular , Vectores Genéticos/genética , Células Madre Pluripotentes Inducidas/citología , Leucocitos Mononucleares/citología , Virus Sendai/genética , Animales , Separación Celular/métodos , Células Cultivadas , Medios de Cultivo , Citocinas/farmacología , Eritroblastos/citología , Eritroblastos/efectos de los fármacos , Eritroblastos/virología , Fibroblastos/citología , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/fisiología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/virología , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/fisiología , Proteínas Recombinantes/genética , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/fisiología
4.
Cell Stem Cell ; 18(1): 67-72, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26712580

RESUMEN

Pluripotent stem cells are defined by their capacity to differentiate into all three tissue layers that comprise the body. Chimera formation, generated by stem cell transplantation to the embryo, is a stringent assessment of stem cell pluripotency. However, the ability of human pluripotent stem cells (hPSCs) to form embryonic chimeras remains in question. Here we show using a stage-matching approach that human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) have the capacity to participate in normal mouse development when transplanted into gastrula-stage embryos, providing in vivo functional validation of hPSC pluripotency. hiPSCs and hESCs form interspecies chimeras with high efficiency, colonize the embryo in a manner predicted from classical developmental fate mapping, and differentiate into each of the three primary tissue layers. This faithful recapitulation of tissue-specific fate post-transplantation underscores the functional potential of hPSCs and provides evidence that human-mouse interspecies developmental competency can occur.


Asunto(s)
Técnicas de Cultivo de Célula , Quimerismo , Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , Animales , Tipificación del Cuerpo , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Células Cultivadas , Gástrula/fisiología , Humanos , Ratones , Medicina Regenerativa , Especificidad de la Especie
5.
Cell Stem Cell ; 13(6): 734-44, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24139758

RESUMEN

Regeneration and homeostasis in the adult intestinal epithelium is driven by proliferative resident stem cells, whose functional properties during organismal development are largely unknown. Here, we show that human and mouse fetal intestine contains proliferative, immature progenitors, which can be expanded in vitro as Fetal Enterospheres (FEnS). A highly similar progenitor population can be established during intestinal differentiation of human induced pluripotent stem cells. Established cultures of mouse fetal intestinal progenitors express lower levels of Lgr5 than mature progenitors and propagate in the presence of the Wnt antagonist Dkk1, and new cultures can be induced to form mature intestinal organoids by exposure to Wnt3a. Following transplantation in a colonic injury model, FEnS contribute to regeneration of colonic epithelium by forming epithelial crypt-like structures expressing region-specific differentiation markers. This work provides insight into mechanisms underlying development of the mammalian intestine and points to future opportunities for patient-specific regeneration of the digestive tract.


Asunto(s)
Colon/lesiones , Colon/fisiología , Feto/citología , Intestinos/embriología , Regeneración , Trasplante de Células Madre , Células Madre/citología , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Colon/citología , Colon/patología , Humanos , Mucosa Intestinal/patología , Intestinos/citología , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Transducción de Señal , Esferoides Celulares/patología , Células Madre/metabolismo
6.
Development ; 139(16): 2866-77, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22791892

RESUMEN

The inner cell mass of the mouse pre-implantation blastocyst comprises epiblast progenitor and primitive endoderm cells of which cognate embryonic (mESCs) or extra-embryonic (XEN) stem cell lines can be derived. Importantly, each stem cell type retains the defining properties and lineage restriction of their in vivo tissue of origin. Recently, we demonstrated that XEN-like cells arise within mESC cultures. This raises the possibility that mESCs can generate self-renewing XEN cells without the requirement for gene manipulation. We have developed a novel approach to convert mESCs to XEN cells (cXEN) using growth factors. We confirm that the downregulation of the pluripotency transcription factor Nanog and the expression of primitive endoderm-associated genes Gata6, Gata4, Sox17 and Pdgfra are necessary for cXEN cell derivation. This approach highlights an important function for Fgf4 in cXEN cell derivation. Paracrine FGF signalling compensates for the loss of endogenous Fgf4, which is necessary to exit mESC self-renewal, but not for XEN cell maintenance. Our cXEN protocol also reveals that distinct pluripotent stem cells respond uniquely to differentiation promoting signals. cXEN cells can be derived from mESCs cultured with Erk and Gsk3 inhibitors (2i), and LIF, similar to conventional mESCs. However, we find that epiblast stem cells (EpiSCs) derived from the post-implantation embryo are refractory to cXEN cell establishment, consistent with the hypothesis that EpiSCs represent a pluripotent state distinct from mESCs. In all, these findings suggest that the potential of mESCs includes the capacity to give rise to both extra-embryonic and embryonic lineages.


Asunto(s)
Células Madre Embrionarias/citología , Endodermo/citología , Endodermo/embriología , Células Madre Pluripotentes/citología , Activinas/administración & dosificación , Animales , Proteína Morfogenética Ósea 4/farmacología , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula , Células Cultivadas , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Endodermo/metabolismo , Factor 4 de Crecimiento de Fibroblastos/deficiencia , Factor 4 de Crecimiento de Fibroblastos/genética , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA6/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Comunicación Paracrina , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Factores de Transcripción SOXF/genética , Tretinoina/administración & dosificación
7.
Stem Cells ; 30(2): 161-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22109880

RESUMEN

Mouse epiblast stem cells (EpiSCs) derived from postimplantation embryos are developmentally and functionally different from embryonic stem cells (ESCs) generated from blastocysts. EpiSCs require Activin A and FGF2 signaling for self-renewal, similar to human ESCs (hESCs), while mouse ESCs require LIF and BMP4. Unlike ESCs, EpiSCs have undergone X-inactivation, similar to the tendency of hESCs. The shared self-renewal and X-inactivation properties of EpiSCs and hESCs suggest that they have an epigenetic state distinct from ESCs. This hypothesis predicts that EpiSCs would have monoallelic expression of most imprinted genes, like that observed in hESCs. Here, we confirm this prediction. By contrast, we find that mouse induced pluripotent stem cells (iPSCs) tend to lose imprinting similar to mouse ESCs. These findings reveal that iPSCs have an epigenetic status associated with their pluripotent state rather than their developmental origin. Our results also reinforce the view that hESCs and EpiSCs are in vitro counterparts, sharing an epigenetic status distinct from ESCs and iPSCs.


Asunto(s)
Epigénesis Genética , Impresión Genómica , Células Madre Pluripotentes/metabolismo , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Células Cultivadas , Metilación de ADN , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Cell Stem Cell ; 9(2): 144-55, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21816365

RESUMEN

BMP is thought to induce hESC differentiation toward multiple lineages including mesoderm and trophoblast. The BMP-induced trophoblast phenotype is a long-standing paradox in stem cell biology. Here we readdressed BMP function in hESCs and mouse epiblast-derived cells. We found that BMP4 cooperates with FGF2 (via ERK) to induce mesoderm and to inhibit endoderm differentiation. These conditions induced cells with high levels of BRACHYURY (BRA) that coexpressed CDX2. BRA was necessary for and preceded CDX2 expression; both genes were essential for expression not only of mesodermal genes but also of trophoblast-associated genes. Maximal expression of the latter was seen in the absence of FGF but these cells coexpressed mesodermal genes and moreover they differed in cell surface and epigenetic properties from placental trophoblast. We conclude that BMP induces human and mouse pluripotent stem cells primarily to form mesoderm, rather than trophoblast, acting through BRA and CDX2.


Asunto(s)
Proteína Morfogenética Ósea 4/farmacología , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Células Madre Embrionarias/citología , Proteínas Fetales/metabolismo , Proteínas de Homeodominio/metabolismo , Células Madre Pluripotentes/citología , Proteínas de Dominio T Box/metabolismo , Animales , Factor de Transcripción CDX2 , Cromonas/farmacología , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Proteínas Fetales/genética , Factor 2 de Crecimiento de Fibroblastos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/genética , Hormonas Glicoproteicas de Subunidad alfa/genética , Hormonas Glicoproteicas de Subunidad alfa/metabolismo , Proteínas de Homeodominio/genética , Humanos , Queratina-7/genética , Queratina-7/metabolismo , Mesodermo/citología , Mesodermo/efectos de los fármacos , Mesodermo/metabolismo , Ratones , Morfolinas/farmacología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Trofoblastos/citología , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo
9.
Stem Cells ; 27(11): 2655-66, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19688839

RESUMEN

Human pluripotent stem cells from embryonic origins and those generated from reprogrammed somatic cells share many characteristics, including indefinite proliferation and a sustained capacity to differentiate into a wide variety of cell types. However, it remains to be demonstrated whether both cell types rely on similar mechanisms to maintain their pluripotent status and to control their differentiation. Any differences in such mechanisms would suggest that reprogramming of fibroblasts to generate induced pluripotent stem cells (iPSCs) results in novel states of pluripotency. In that event, current methods for expanding and differentiating human embryonic stem cells (ESCs) might not be directly applicable to human iPSCs. However, we show here that human iPSCs rely on activin/nodal signaling to control Nanog expression and thereby maintain pluripotency, thus revealing their mechanistic similarity to human ESCs. We also show that growth factors necessary and sufficient for achieving specification of human ESCs into extraembryonic tissues, neuroectoderm, and mesendoderm also drive differentiation of human iPSCs into the same tissues. Importantly, these experiments were performed in fully chemically defined medium devoid of factors that could obscure analysis of developmental mechanisms or render the resulting tissues incompatible with future clinical applications. Together these data reveal that human iPSCs rely on mechanisms similar to human ESCs to maintain their pluripotency and to control their differentiation, showing that these pluripotent cell types are functionally equivalent.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , Transducción de Señal/fisiología , Receptores de Activinas/antagonistas & inhibidores , Activinas/farmacología , Adulto , Animales , Benzamidas/farmacología , Proteína Morfogenética Ósea 4/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Medios de Cultivo , Dioxoles/farmacología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Femenino , Factor 2 de Crecimiento de Fibroblastos/farmacología , Fibroblastos/citología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/fisiología , Masculino , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/fisiología , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
10.
Stem Cells ; 27(2): 341-51, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19056911

RESUMEN

Embryonic stem (ES) cells represent a possible source of islet tissue for the treatment of diabetes. Achieving this goal will require a detailed understanding of how the transcription factor cascade initiated by the homeodomain transcription factor Pdx1 culminates in pancreatic beta-cell development. Here we describe a genetic approach that enables fine control of Pdx1 transcriptional activity during endoderm differentiation of mouse and human ES cell. By activating an exogenous Pdx1VP16 protein in populations of cells enriched in definitive endoderm we show a distinct lineage-dependent requirement for this transcription factor's activity. Mimicking the natural biphasic pattern of Pdx1 expression was necessary to induce an endocrine pancreas-like cell phenotype, in which 30% of the cells were beta-cell-like. Cell markers consistent with the different beta-cell differentiation stages appeared in a sequential order following the natural pattern of pancreatic development. Furthermore, in mouse ES-derived cultures the differentiated beta-like cells secreted C-peptide (insulin) in response to KCl and 3-isobutyl-1-methylxanthine, suggesting that following a natural path of development in vitro represents the best approach to generate functional pancreatic cells. Together these results reveal for the first time a significant effect of the timed expression of Pdx1 on the non-beta-cells in the developing endocrine pancreas. Collectively, we show that this method of in vitro differentiation provides a template for inducing and studying ES cell differentiation into insulin-secreting cells.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/metabolismo , Transactivadores/metabolismo , Activinas/farmacología , Amiloide/genética , Animales , Western Blotting , Proteína Morfogenética Ósea 4/farmacología , Péptido C/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Células Madre Embrionarias/efectos de los fármacos , Citometría de Flujo , Expresión Génica/efectos de los fármacos , Células HeLa , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Humanos , Inmunohistoquímica , Insulina/genética , Polipéptido Amiloide de los Islotes Pancreáticos , Proteínas con Homeodominio LIM , Ratones , Reacción en Cadena de la Polimerasa , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología , Transactivadores/genética , Transactivadores/fisiología , Factores de Transcripción
11.
Stem Cells ; 26(2): 496-504, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18024421

RESUMEN

Silencing and variegated transgene expression are poorly understood problems that can interfere with gene function studies in human embryonic stem cells (hESCs). We show that transgene expression (enhanced green fluorescent protein [EGFP]) from random integration sites in hESCs is affected by variegation and silencing, with only half of hESCs expressing the transgene, which is gradually lost after withdrawal of selection and differentiation. We tested the hypothesis that a transgene integrated into the adeno-associated virus type 2 (AAV2) target region on chromosome 19, known as the AAVS1 locus, would maintain transgene expression in hESCs. When we used AAV2 technology to target the AAVS1 locus, 4.16% of hESC clones achieved AAVS1-targeted integration. Targeted clones expressed Oct-4, stage-specific embryonic antigen-3 (SSEA3), and Tra-1-60 and differentiated into all three primary germ layers. EGFP expression from the AAVS1 locus showed significantly reduced variegated expression when in selection, with 90% +/- 4% of cells expressing EGFP compared with 57% +/- 32% for randomly integrated controls, and reduced tendency to undergo silencing, with 86% +/- 7% hESCs expressing EGFP 25 days after withdrawal of selection compared with 39% +/- 31% for randomly integrated clones. In addition, quantitative polymerase chain reaction analysis of hESCs also indicated significantly higher levels of EGFP mRNA in AAVS1-targeted clones as compared with randomly integrated clones. Transgene expression from the AAVS1 locus was shown to be stable during hESC differentiation, with more than 90% of cells expressing EGFP after 15 days of differentiation, as compared with approximately 30% for randomly integrated clones. These results demonstrate the utility of transgene integration at the AAVS1 locus in hESCs and its potential clinical application.


Asunto(s)
Dependovirus/genética , Células Madre Embrionarias/metabolismo , Diferenciación Celular , Línea Celular , Cromosomas Humanos Par 19/genética , Células Madre Embrionarias/citología , Expresión Génica , Silenciador del Gen , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Humanos , Hibridación Fluorescente in Situ , Fenotipo , Proteínas Recombinantes/genética , Transfección , Integración Viral/genética
12.
Hum Mol Genet ; 16 Spec No. 2: R243-51, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17911167

RESUMEN

Investigation of the epigenetic stability of human embryonic stem cells (hESCs) is a crucial step for their use in cell-replacement therapies, as well as for assessing whether hESCs model epigenetic regulation in human pre-implantation cell types. To address these issues, we have examined the expression of imprinted genes in a previous study and more recently in 46 individual hESC lines as part of the International Stem Cell Initiative. Our results show that nearly all hESC lines examined possessed a substantial degree of epigenetic stability, despite differences in genetic background and in their derivation and initial propagation conditions. However, some hESCs did show loss of allele-specific expression, which could have implications for hESC differentiation and epigenetic stability (both in vitro and after clinical transplantation). A benefit of our and other recent studies of genomic imprinting in hESCs was the identification of imprinted genes that provide a useful indication of epigenetic stability. SNRPN, IPW and KCNQ1OT1 were highly stable and thus appeared insensitive to perturbation; in contrast, H19, IGF2 and MEG3 were more variable and thus could potentially provide a sensitive indication of epigenetic status. In this review, we examine the differences between imprinted genes in their susceptibility to perturbation and discuss the potential molecular basis for these differences. This examination provides insight into the regulation of genomic imprinting in hESCs and the corresponding peri-implantation stages of human development.


Asunto(s)
Células Madre Embrionarias/metabolismo , Impresión Genómica , Línea Celular , Mapeo Cromosómico , Metilación de ADN , Epigénesis Genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Inestabilidad Genómica , Humanos , Masculino , Células Madre Pluripotentes/metabolismo
13.
Nature ; 448(7150): 191-5, 2007 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-17597762

RESUMEN

Although the first mouse embryonic stem (ES) cell lines were derived 25 years ago using feeder-layer-based blastocyst cultures, subsequent efforts to extend the approach to other mammals, including both laboratory and domestic species, have been relatively unsuccessful. The most notable exceptions were the derivation of non-human primate ES cell lines followed shortly thereafter by their derivation of human ES cells. Despite the apparent common origin and the similar pluripotency of mouse and human embryonic stem cells, recent studies have revealed that they use different signalling pathways to maintain their pluripotent status. Mouse ES cells depend on leukaemia inhibitory factor and bone morphogenetic protein, whereas their human counterparts rely on activin (INHBA)/nodal (NODAL) and fibroblast growth factor (FGF). Here we show that pluripotent stem cells can be derived from the late epiblast layer of post-implantation mouse and rat embryos using chemically defined, activin-containing culture medium that is sufficient for long-term maintenance of human embryonic stem cells. Our results demonstrate that activin/Nodal signalling has an evolutionarily conserved role in the derivation and the maintenance of pluripotency in these novel stem cells. Epiblast stem cells provide a valuable experimental system for determining whether distinctions between mouse and human embryonic stem cells reflect species differences or diverse temporal origins.


Asunto(s)
Embrión de Mamíferos/citología , Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Activinas/metabolismo , Animales , Técnicas de Cultivo de Célula , Línea Celular , Medios de Cultivo/química , Implantación del Embrión , Células Madre Embrionarias/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Análisis de Secuencia por Matrices de Oligonucleótidos , Células Madre Pluripotentes/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Transducción de Señal
14.
Cell Stem Cell ; 1(3): 346-52, 2007 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-18371368

RESUMEN

Parthenogenesis and somatic cell nuclear transfer (SCNT) are two methods for deriving embryonic stem (ES) cells that are genetically matched to the oocyte donor or somatic cell donor, respectively. Using genome-wide single nucleotide polymorphism (SNP) analysis, we demonstrate distinct signatures of genetic recombination that distinguish parthenogenetic ES cells from those generated by SCNT. We applied SNP analysis to the human ES cell line SCNT-hES-1, previously claimed to have been derived by SCNT, and present evidence that it represents a human parthenogenetic ES cell line. Genome-wide SNP analysis represents a means to validate the genetic provenance of an ES cell line.


Asunto(s)
Células Madre Embrionarias/metabolismo , Técnicas de Transferencia Nuclear , Partenogénesis , Recombinación Genética/genética , Animales , Línea Celular , Análisis Citogenético , Metilación de ADN , Genoma Humano/genética , Heterocigoto , Homocigoto , Humanos , Ratones , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Manejo de Especímenes
15.
Stem Cells ; 24(5): 1359-69, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16410392

RESUMEN

Human embryonic stem cells (hESCs) are a potential source of hematopoietic cells for therapeutic transplantation and can provide a model for human hematopoiesis. Culture of hESCs on murine stromal layers or in stromal-free conditions as embryoid bodies results in low levels of hematopoietic cells. Here we demonstrate that overexpression of the transcription factor HOXB4 considerably augments hematopoietic development of hESCs. Stable HOXB4-expressing hESC clones were generated by lipofection and could be maintained in the undifferentiated state for prolonged passages. Moreover, differentiation of hESCs as embryoid bodies in serum-containing medium without the use of additional cytokines led to sequential expansion of first erythroid and then myeloid and monocytic progenitors from day 10 of culture. These cells retained the capacity to develop into formed blood elements during in vitro culture. Consistent with the development of committed hematopoietic cells, we observed the expression of transcription factors known to be critical for hematopoietic development. We thus demonstrate successful use of enforced gene expression to promote the differentiation of hESCs into a terminally differentiated tissue, thereby revealing an important role for HOXB4 in supporting their in vitro development along the hematopoietic pathway.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Citocinas/farmacología , ADN Complementario/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/farmacología , Humanos , Factores de Transcripción/genética , Factores de Transcripción/farmacología , Transfección , Regulación hacia Arriba
16.
Lancet ; 366(9502): 2019-25, 2005 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-16338451

RESUMEN

BACKGROUND: Human embryonic stem (hES) cells are a promising source for transplantation to replace diseased or damaged tissue, but their differentiated progeny express human leucocyte antigens (HLAs) that will probably cause graft rejection. The creation of a bank of HLA-typed hES cells, from which a best match could be selected, would help reduce the likelihood of graft rejection. We investigated how many hES cell lines would be needed to make matching possible in most cases. METHODS: The number of hES cell lines needed to achieve varying degrees of HLA match was estimated by use of, as a surrogate for hES-cell donor embryos, blood group and HLA types on a series of 10,000 consecutive UK cadaveric organ donors. The degree of blood group compatibility and HLA matching for a recipient population consisting of 6577 patients registered on the UK kidney transplant waiting list was determined, assuming all donor hES cell lines could provide a transplant for an unlimited number of recipients. FINDINGS: A bank of 150 consecutive donors provided a full match at HLA-A, HLA-B, and HLA-DR for a minority of recipients (<20%); a beneficial match (defined as one HLA-A or one HLA-B mismatch only) or better for 37.9% (range 27.9-47.5); and an HLA-DR match or better for 84.9% (77.5-90.0). Extending the number of donors beyond 150 conferred only a very gradual incremental benefit with respect to HLA matching. A panel of only ten donors homozygous for common HLA types selected from 10,000 donors provided a complete HLA-A, HLA-B and HLA-DR match for 37.7% of recipients, and a beneficial match for 67.4%. INTERPRETATION: Approximately 150 consecutive blood group compatible donors, 100 consecutive blood group O donors, or ten highly selected homozygous donors could provide the maximum practical benefit for HLA matching. The findings from these simulations have practical, political, and ethical implications for the establishment of hES-cell banks.


Asunto(s)
Donantes de Sangre/estadística & datos numéricos , Tipificación y Pruebas Cruzadas Sanguíneas/estadística & datos numéricos , Histocompatibilidad , Trasplante de Células Madre/estadística & datos numéricos , Células Madre/clasificación , Bancos de Muestras Biológicas , Humanos
17.
J Cell Sci ; 118(Pt 19): 4495-509, 2005 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16179608

RESUMEN

Maintenance of pluripotency is crucial to the mammalian embryo's ability to generate the extra-embryonic and embryonic tissues that are needed for intrauterine survival and foetal development. The recent establishment of embryonic stem cells from human blastocysts (hESCs) provides an opportunity to identify the factors supporting pluripotency at early stages of human development. Using this in vitro model, we have recently shown that Nodal can block neuronal differentiation, suggesting that TGFbeta family members are involved in cell fate decisions of hESCs, including preservation of their pluripotency. Here, we report that Activin/Nodal signalling through Smad2/3 activation is necessary to maintain the pluripotent status of hESCs. Inhibition of Activin/Nodal signalling by follistatin and by overexpression of Lefty or Cerberus-Short, or by the Activin receptor inhibitor SB431542, precipitates hESC differentiation. Nevertheless, neither Nodal nor Activin is sufficient to sustain long-term hESC growth in a chemically defined medium without serum. Recent studies have shown that FGF2 can also maintain long-term expression of pluripotency markers, and we find that inhibition of the FGF signalling pathway by the tyrosine kinase inhibitor SU5402 causes hESC differentiation. However, this effect of FGF on hESC pluripotency depends on Activin/Nodal signalling, because it is blocked by SB431542. Finally, long-term maintenance of in-vitro pluripotency can be achieved with a combination of Activin or Nodal plus FGF2 in the absence of feeder-cell layers, conditioned medium or Serum Replacer. These findings suggest that the Activin/Nodal pathway maintains pluripotency through mechanism(s) in which FGF acts as a competence factor and therefore provide further evidence of distinct mechanisms for preservation of pluripotency in mouse and human ESCs.


Asunto(s)
Activinas/metabolismo , Embrión de Mamíferos/citología , Factores de Crecimiento de Fibroblastos/metabolismo , Células Madre Pluripotentes/fisiología , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Receptores de Activinas Tipo I/antagonistas & inhibidores , Receptores de Activinas Tipo I/metabolismo , Activinas/genética , Animales , Benzamidas/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Dioxoles/metabolismo , Embrión de Mamíferos/fisiología , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/metabolismo , Proteínas Ligadas a GPI , Humanos , Péptidos y Proteínas de Señalización Intercelular , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína Nodal , Células Madre Pluripotentes/citología , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta1
18.
Stem Cells Dev ; 14(2): 162-72, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15910242

RESUMEN

Understanding how to direct the fate of embryonic stem (ES) cells upon differentiation is critical to their eventual use in therapeutic applications. Clues for controlling ES cell differentiation may be found in the early embryo because mouse ES cells form derivatives of all three embryonic germ layers upon injection into blastocysts. One promising candidate for influencing the differentiation of ES cells into the embryonic germ layers is the transforming growth factor-beta (TGF-beta) growth factor, Nodal. Nodal null mouse mutants lack mesoderm, and injection of Nodal mRNA into nonmammalian embryos induces mesodermal and endodermal tissues. We find that overexpression of Nodal in mouse ES cells leads not only to up-regulation of mesodermal and endodermal cell markers but also to downregulation of neuroectodermal markers. These findings demonstrate the importance of Nodal's influence on the differentiation of pluripotent cells to all three of the primary germ layers. Accordingly, altering expression of factors responsible for cell differentiation in the intact embryo provides an approach for directing ES cell fates in vitro toward therapeutically useful cell types.


Asunto(s)
Embrión de Mamíferos/citología , Células Madre/citología , Factor de Crecimiento Transformador beta/biosíntesis , Factor de Crecimiento Transformador beta/fisiología , Animales , Blastocisto/citología , Diferenciación Celular , Línea Celular , Linaje de la Célula , Regulación hacia Abajo , Ectodermo/citología , Endodermo/citología , Endodermo/metabolismo , Células Germinativas/citología , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Modelos Biológicos , Proteína Nodal , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Teratoma/patología , Factores de Tiempo , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba
19.
Reprod Biomed Online ; 10 Suppl 1: 60-2, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15820011

RESUMEN

My task today is to describe the properties of stem cells speaking from the perspective of an investigator familiar with mammalian embryos and also working on human embryonic stem cells. My laboratory is based in the Department of Surgery and the Cambridge Stem Cell Institute, University of Cambridge, where you can find more information about ourselves and our colleagues (www.stemcells.cam.ac.uk).


Asunto(s)
Embrión de Mamíferos/citología , Células Madre Pluripotentes/fisiología , Diferenciación Celular/fisiología , Epigénesis Genética/fisiología , Ética Médica , Ética en Investigación , Impresión Genómica/fisiología , Humanos , Trasplante de Células Madre/ética
20.
Mol Reprod Dev ; 68(1): 5-16, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15039943

RESUMEN

Although several mitogens and survival factors have been previously shown to act on primordial germ cells (PGCs) in culture, it is not clear whether they are responsible for controlling proliferation of PGCs in the embryo. We show here that during their migratory phase, PGCs do not express FGF-4, FGF-8, or FGF-17, but these FGFs are expressed by neighboring cells. Thus, any FGF action on migrating PGCs would appear to be through a paracrine mechanism. We found that after entering into the gonads, PGCs start to express FGF-4 and FGF-8. On this basis, we hypothesize that FGF signaling is involved in both a paracrine manner in initiating PGC proliferation during their migration and an autocrine manner in sustaining PGC proliferation after their arrival in the gonads. We then studied the role of soluble stem cell factor (SCF), which acts as a survival factor or a mitogen in culture, to determine whether it interacts with FGFs. We found that SCF has a complex effect on PGC proliferation. On one hand, soluble SCF promoted PGC proliferation synergistically with FGF in the absence of membrane-bound SCF. Conversely, soluble SCF inhibited FGF-stimulated proliferation of PGCs in the presence of membrane-bound SCF. We account for these findings in a model involving regulation of PGC proliferation, in which SCF modulates the response to FGFs.


Asunto(s)
Comunicación Autocrina , Células Germinativas/citología , Células Germinativas/metabolismo , Comunicación Paracrina , Animales , Comunicación Autocrina/efectos de los fármacos , División Celular/efectos de los fármacos , Movimiento Celular , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Factor 4 de Crecimiento de Fibroblastos , Factor 8 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Células Germinativas/efectos de los fármacos , Gónadas/citología , Gónadas/metabolismo , Hibridación in Situ , Ratones , Comunicación Paracrina/efectos de los fármacos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Factor de Células Madre/química , Factor de Células Madre/metabolismo , Factor de Células Madre/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA