Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 326(3): E226-E244, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197793

RESUMEN

17α-estradiol (17α-E2) is a naturally occurring nonfeminizing diastereomer of 17ß-estradiol that has life span-extending effects in rodent models. To date, studies of the systemic and tissue-specific benefits of 17α-E2 have largely focused on the liver, brain, and white adipose tissue with far less focus on skeletal muscle. Skeletal muscle has an important role in metabolic and age-related disease. Therefore, this study aimed to determine whether 17α-E2 treatment has positive, tissue-specific effects on skeletal muscle during a high-fat feeding. We hypothesized that male, but not female, mice, would benefit from 17α-E2 treatment during a high-fat diet (HFD) with changes in the mitochondrial proteome to support lipid oxidation and subsequent reductions in diacylglycerol (DAG) and ceramide content. To test this hypothesis, we used a multiomics approach to determine changes in lipotoxic lipid intermediates, metabolites, and proteins related to metabolic homeostasis. Unexpectedly, we found that 17α-E2 had marked, but different, beneficial effects within each sex. In male mice, we show that 17α-E2 alleviates HFD-induced metabolic detriments of skeletal muscle by reducing the accumulation of diacylglycerol (DAG), and inflammatory cytokine levels, and altered the abundance of most of the proteins related to lipolysis and ß-oxidation. Similar to male mice, 17α-E2 treatment reduced fat mass while protecting muscle mass in female mice but had little muscle inflammatory cytokine levels. Although female mice were resistant to HFD-induced changes in DAGs, 17α-E2 treatment induced the upregulation of six DAG species. In female mice, 17α-E2 treatment changed the relative abundance of proteins involved in lipolysis, ß-oxidation, as well as structural and contractile proteins but to a smaller extent than male mice. These data demonstrate the metabolic benefits of 17α-E2 in skeletal muscle of male and female mice and contribute to the growing literature of the use of 17α-E2 for multi tissue health span benefits.NEW & NOTEWORTHY Using a multiomics approach, we show that 17α-E2 alleviates HFD-induced metabolic detriments in skeletal muscle by altering bioactive lipid intermediates, inflammatory cytokines, and the abundance of proteins related to lipolysis and muscle contraction. The positive effects of 17α-E2 in skeletal muscle occur in both sexes but differ in their outcome.


Asunto(s)
Dieta Alta en Grasa , Estradiol , Animales , Masculino , Femenino , Ratones , Estradiol/farmacología , Estradiol/metabolismo , Dieta Alta en Grasa/efectos adversos , Diglicéridos/metabolismo , Citocinas/metabolismo , Músculo Esquelético/metabolismo , Ratones Endogámicos C57BL
2.
J Cachexia Sarcopenia Muscle ; 14(5): 2076-2089, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37448295

RESUMEN

BACKGROUND: Skeletal muscle mass and strength diminish during periods of disuse but recover upon return to weight bearing in healthy adults but are incomplete in old muscle. Efforts to improve muscle recovery in older individuals commonly aim at increasing myofibrillar protein synthesis via mammalian target of rapamycin (mTOR) stimulation despite evidence demonstrating that old muscle has chronically elevated levels of mammalian target of rapamycin complex 1 (mTORC1) activity. We hypothesized that protein synthesis is higher in old muscle than adult muscle, which contributes to a proteostatic stress that impairs recovery. METHODS: We unloaded hindlimbs of adult (10-month) and old (28-month) F344BN rats for 14 days to induce atrophy, followed by reloading up to 60 days with deuterium oxide (D2 O) labelling to study muscle regrowth and proteostasis. RESULTS: We found that old muscle has limited recovery of muscle mass during reloading despite having higher translational capacity and myofibrillar protein synthesis (0.029 k/day ± 0.002 vs. 0.039 k/day ± 0.002, P < 0.0001) than adult muscle. We showed that collagen protein synthesis was not different (0.005 k (1/day) ± 0.0005 vs. 0.004 k (1/day) ± 0.0005, P = 0.15) in old compared to adult, but old muscle had higher collagen concentration (4.5 µg/mg ± 1.2 vs. 9.8 µg/mg ± 0.96, P < 0.01), implying that collagen breakdown was slower in old muscle than adult muscle. This finding was supported by old muscle having more insoluble collagen (4.0 ± 1.1 vs. 9.2 ± 0.9, P < 0.01) and an accumulation of advanced glycation end products (1.0 ± 0.06 vs. 1.5 ± 0.08, P < 0.001) than adult muscle during reloading. Limited recovery of muscle mass during reloading is in part due to higher protein degradation (0.017 1/t ± 0.002 vs. 0.028 1/t ± 0.004, P < 0.05) and/or compromised proteostasis as evidenced by accumulation of ubiquitinated insoluble proteins (1.02 ± 0.06 vs. 1.22 ± 0.06, P < 0.05). Last, we showed that synthesis of individual proteins related to protein folding/refolding, protein degradation and neural-related biological processes was higher in old muscle during reloading than adult muscle. CONCLUSIONS: Our data suggest that the failure of old muscle to recover after disuse is not due to limitations in the ability to synthesize myofibrillar proteins but because of other impaired proteostatic mechanisms (e.g., protein folding and degradation). These data provide novel information on individual proteins that accumulate in protein aggregates after disuse and certain biological processes such as protein folding and degradation that likely play a role in impaired recovery. Therefore, interventions to enhance regrowth of old muscle after disuse should be directed towards the identified impaired proteostatic mechanisms and not aimed at increasing protein synthesis.


Asunto(s)
Atrofia Muscular , Trastornos Musculares Atróficos , Humanos , Ratas , Animales , Anciano , Atrofia Muscular/patología , Envejecimiento/fisiología , Músculo Esquelético/patología , Trastornos Musculares Atróficos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Colágeno/metabolismo , Mamíferos
3.
Am J Physiol Endocrinol Metab ; 324(2): E120-E134, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36516471

RESUMEN

Estrogen signaling is protective against chronic liver diseases, although men and a subset of women are contraindicated for chronic treatment with 17ß-estradiol (17ß-E2) or combination hormone replacement therapies. We sought to determine if 17α-estradiol (17α-E2), a naturally occurring diastereomer of 17ß-E2, could attenuate liver fibrosis. We evaluated the effects of 17α-E2 treatment on collagen synthesis and degradation rates using tracer-based labeling approaches in male mice subjected to carbon tetrachloride (CCl4)-induced liver fibrosis. We also assessed the effects of 17α-E2 on markers of hepatic stellate cell (HSC) activation, collagen cross-linking, collagen degradation, and liver macrophage content and polarity. We found that 17α-E2 significantly reduced collagen synthesis rates and increased collagen degradation rates, which was mirrored by declines in transforming growth factor ß1 (TGF-ß1) and lysyl oxidase-like 2 (LOXL2) protein content in liver. These improvements were associated with increased matrix metalloproteinase 2 (MMP2) activity and suppressed stearoyl-coenzyme A desaturase 1 (SCD1) protein levels, the latter of which has been linked to the resolution of liver fibrosis. We also found that 17α-E2 increased liver fetuin-A protein, a strong inhibitor of TGF-ß1 signaling, and reduced proinflammatory macrophage activation and cytokines expression in the liver. We conclude that 17α-E2 reduces fibrotic burden by suppressing HSC activation and enhancing collagen degradation mechanisms. Future studies will be needed to determine if 17α-E2 acts directly in hepatocytes, HSCs, and/or immune cells to elicit these benefits.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Factor de Crecimiento Transformador beta1 , Masculino , Ratones , Femenino , Animales , Factor de Crecimiento Transformador beta1/farmacología , Metaloproteinasa 2 de la Matriz/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Longevidad , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Colágeno/metabolismo
4.
Function (Oxf) ; 4(1): zqac059, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36569816

RESUMEN

The skeletal muscle research field generally accepts that nuclei in skeletal muscle fibers (ie, myonuclei) are post-mitotic and unable to proliferate. Because our deuterium oxide (D2O) labeling studies showed DNA synthesis in skeletal muscle tissue, we hypothesized that resident myonuclei can replicate in vivo. To test this hypothesis, we used a mouse model that temporally labeled myonuclei with GFP followed by D2O labeling during normal cage activity, functional overload, and with satellite cell ablation. During normal cage activity, we observed deuterium enrichment into myonuclear DNA in 7 out of 7 plantaris (PLA), 6 out of 6 tibialis anterior (TA), 5 out of 7 gastrocnemius (GAST), and 7 out of 7 quadriceps (QUAD). The average fractional synthesis rates (FSR) of DNA in myonuclei were: 0.0202 ± 0.0093 in PLA, 0.0239 ± 0.0040 in TA, 0.0076 ± 0. 0058 in GAST, and 0.0138 ± 0.0039 in QUAD, while there was no replication in myonuclei from EDL. These FSR values were largely reproduced in the overload and satellite cell ablation conditions, although there were higher synthesis rates in the overloaded PLA muscle. We further provided evidence that myonuclear replication is through endoreplication, which results in polyploidy. These novel findings contradict the dogma that skeletal muscle nuclei are post-mitotic and open potential avenues to harness the intrinsic replicative ability of myonuclei for muscle maintenance and growth.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Ratones , Animales , Fibras Musculares Esqueléticas/fisiología , Núcleo Celular/genética , Músculo Cuádriceps , Poliésteres
5.
J Cachexia Sarcopenia Muscle ; 12(6): 1764-1775, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34418329

RESUMEN

BACKGROUND: Ageing and cachexia cause a loss of muscle mass over time, indicating that protein breakdown exceeds protein synthesis. Deuterium oxide (D2 O) is used for studies of protein turnover because of the advantages of long-term labelling, but these methods introduce considerations that have been largely overlooked when studying conditions of protein gain or loss. The purpose of this study was to demonstrate the importance of accounting for a change in protein mass, a non-steady state, during D2 O labelling studies while also exploring the contribution of protein synthesis and breakdown to denervation-induced muscle atrophy. METHODS: Adult (6 months) male C57BL/6 mice (n = 14) were labelled with D2 O for a total of 7 days following unilateral sciatic nerve transection to induce denervation of hindlimb muscles. The contralateral sham limb and nonsurgical mice (n = 5) were used as two different controls to account for potential crossover effects of denervation. We calculated gastrocnemius myofibrillar and collagen protein synthesis and breakdown assuming steady-state or using non-steady-state modelling. We measured RNA synthesis rates to further understand ribosomal turnover during atrophy. RESULTS: Gastrocnemius mass was less in denervated muscle (137 ± 9 mg) compared with sham (174 ± 15 mg; P < 0.0001) or nonsurgical control (162 ± 5 mg; P < 0.0001). With steady-state calculations, fractional synthesis and breakdown rates (FSR and FBR) were lower in the denervated muscle (1.49 ± 0.06%/day) compared with sham (1.81 ± 0.09%/day; P < 0.0001) or nonsurgical control (2.27 ± 0.04%/day; P < 0.0001). When adjusting for change in protein mass, FSR was 4.21 ± 0.19%/day in denervated limb, whereas FBR was 4.09 ± 0.22%/day. When considering change in protein mass (ksyn ), myofibrillar synthesis was lower in denervated limb (2.44 ± 0.14 mg/day) compared with sham (3.43 ± 0.22 mg/day; P < 0.0001) and non-surgical control (3.74 ± 0.12 mg/day; P < 0.0001), whereas rate of protein breakdown (kdeg, 1/t) was greater in denervated limb (0.050 ± 0.003) compared with sham (0.019 ± 0.001; P < 0.0001) and nonsurgical control (0.023 ± 0.000; P < 0.0001). Muscle collagen breakdown was completely inhibited during denervation. There was a strong correlation (r = 0.83, P < 0.001) between RNA and myofibrillar protein synthesis in sham but not denervated muscle. CONCLUSIONS: We show conflicting results between steady- and non-steady-state calculations on myofibrillar protein synthesis and breakdown during periods of muscle loss. We also found that collagen accumulation was largely from a decrease in collagen breakdown. Comparison between sham and non-surgical control demonstrated a crossover effect of denervation on myofibrillar protein synthesis and ribosomal biogenesis, which impacts study design for unilateral atrophy studies. These considerations are important because not accounting for them can mislead therapeutic attempts to maintain muscle mass.


Asunto(s)
Desnervación Muscular , Atrofia Muscular , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/patología , Atrofia Muscular/patología , Biosíntesis de Proteínas
6.
J Cachexia Sarcopenia Muscle ; 10(6): 1195-1209, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31313502

RESUMEN

BACKGROUND: Successful strategies to halt or reverse sarcopenia require a basic understanding of the factors that cause muscle loss with age. Acute periods of muscle loss in older individuals have an incomplete recovery of muscle mass and strength, thus accelerating sarcopenic progression. The purpose of the current study was to further understand the mechanisms underlying the failure of old animals to completely recover muscle mass and function after a period of hindlimb unloading. METHODS: Hindlimb unloading was used to induce muscle atrophy in Fischer 344-Brown Norway (F344BN F1) rats at 24, 28, and 30 months of age. Rats were hindlimb unloaded for 14 days and then reloaded at 24 months (Reloaded 24), 28 months (Reloaded 28), and 24 and 28 months (Reloaded 24/28) of age. Isometric torque was determined at 24 months of age (24 months), at 28 months of age (28 months), immediately after 14 days of reloading, and at 30 months of age (30 months). During control or reloaded conditions, rats were labelled with deuterium oxide (D2 O) to determine rates of muscle protein synthesis and RNA synthesis. RESULTS: After 14 days of reloading, in vivo isometric torque returned to baseline in Reloaded 24, but not Reloaded 28 and Reloaded 24/28. Despite the failure of Reloaded 28 and Reloaded 24/28 to regain peak force, all groups were equally depressed in peak force generation at 30 months. Increased age did not decrease muscle protein synthesis rates, and in fact, increased resting rates of protein synthesis were measured in the myofibrillar fraction (Fractional synthesis rate (FSR): %/day) of the plantaris (24 months: 2.53 ± 0.17; 30 months: 3.29 ± 0.17), and in the myofibrillar (24 months: 2.29 ± 0.07; 30 months: 3.34 ± 0.11), collagen (24 months: 1.11 ± 0.07; 30 months: 1.55 ± 0.14), and mitochondrial (24 months: 2.38 ± 0.16; 30 months: 3.20 ± 0.10) fractions of the tibialis anterior (TA). All muscles increased myofibrillar protein synthesis (%/day) in Reloaded 24 (soleus: 3.36 ± 0.11, 5.23 ± 0.19; plantaris: 2.53 ± 0.17, 3.66 ± 0.07; TA: 2.29 ± 0.14, 3.15 ± 0.12); however, in Reloaded 28, only the soleus had myofibrillar protein synthesis rates (%/day) >28 months (28 months: 3.80 ± 0.10; Reloaded 28: 4.86 ± 0.19). Across the muscles, rates of protein synthesis were correlated with RNA synthesis (all muscles combined, R2 = 0.807, P < 0.0001). CONCLUSIONS: These data add to the growing body of literature that indicate that changes with age, including following disuse atrophy, differ by muscle. In addition, our findings lead to additional questions of the underlying mechanisms by which some muscles are maintained with age while others are not.


Asunto(s)
Envejecimiento/patología , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Trastornos Musculares Atróficos/fisiopatología , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Modelos Animales de Enfermedad , Suspensión Trasera/efectos adversos , Masculino , Fibras Musculares Esqueléticas/fisiología , Proteínas Musculares/metabolismo , Trastornos Musculares Atróficos/etiología , Trastornos Musculares Atróficos/genética , Trastornos Musculares Atróficos/metabolismo , Tamaño de los Órganos , Biosíntesis de Proteínas , Ratas , Ratas Endogámicas F344 , Torque
7.
J Gerontol A Biol Sci Med Sci ; 68(12): 1493-501, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23657975

RESUMEN

Chronic inhibition of the protein synthesis regulator mTORC1 through rapamycin extends life span in mice, with longer extension in females than in males. Whether rapamycin treatment inhibits protein synthesis or whether it does so differently between sexes has not been examined. UM-HET3 mice were fed a control or rapamycin-supplemented (Rap) diet for 12 weeks. Protein synthesis in mixed, cytosolic (cyto), and mitochondrial (mito) fractions and DNA synthesis and mTORC1 signaling were determined in skeletal muscle, heart, and liver. In both sexes, mito protein synthesis was maintained in skeletal muscle from Rap despite decreases in mixed and cyto fractions, DNA synthesis, and rpS6 phosphorylation. In the heart, no change in protein synthesis occurred despite the decreased DNA synthesis. In the heart and liver, Rap males were more sensitive to mTORC1 inhibition than Rap females. In conclusion, we show changes in protein synthesis and mTORC1 signaling that differ by sex and tissue.


Asunto(s)
Mitocondrias , Recambio Mitocondrial/efectos de los fármacos , Complejos Multiproteicos/metabolismo , Biosíntesis de Proteínas , Transducción de Señal , Sirolimus , Serina-Treonina Quinasas TOR/metabolismo , Animales , Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/farmacología , Óxido de Deuterio/farmacología , Dieta/métodos , Femenino , Longevidad/efectos de los fármacos , Longevidad/genética , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/genética , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Proteína S6 Ribosómica/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sirolimus/metabolismo , Sirolimus/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA