Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Food Funct ; 15(9): 4983-4999, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38606532

RESUMEN

Propolis is a resinous mixture produced by honeybees which has been used since ancient times for its useful properties. However, its chemical composition and bioactivity may vary, depending on the geographical area of origin and the type of tree bees use for collecting pollen. In this context, this research aimed to investigate the total phenolic content (using the Folin-Ciocalteu assay) and the total antioxidant capacity (using the FRAP, DPPH, and ABTS assays) of three black poplar (Populus nigra L.) propolis (BPP) solutions (S1, S2, and S3), as well as the chemical composition (HPLC-ESI-MSn) and biological activities (effect on cell viability, genotoxic/antigenotoxic properties, and anti-inflammatory activity, and effect on ROS production) of the one which showed the highest antioxidant activity (S1). The hydroalcoholic BPP solution S1 was a prototype of an innovative, research-type product by an Italian nutraceutical manufacturer. In contrast, hydroalcoholic BPP solutions S2 and S3 were conventional products purchased from local pharmacy stores. For the three extracts, 50 phenolic compounds, encompassing phenolic acids and flavonoids, were identified. In summary, the results showed an interesting chemical profile and the remarkable antioxidant, antigenotoxic, anti-inflammatory and ROS-modulating activities of the innovative BPP extract S1, paving the way for future research. In vivo investigations will be a possible line to take, which may help corroborate the hypothesis of the potential health benefits of this product, and even stimulate further ameliorations of the new prototype.


Asunto(s)
Antiinflamatorios , Antioxidantes , Populus , Própolis , Própolis/química , Própolis/farmacología , Populus/química , Antioxidantes/farmacología , Antioxidantes/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Animales , Antimutagênicos/farmacología , Antimutagênicos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ratones , Humanos , Fenoles/química , Fenoles/farmacología , Fenoles/análisis , Supervivencia Celular/efectos de los fármacos
2.
Heliyon ; 10(1): e24196, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38268604

RESUMEN

The discovery of the interactome of cannabidiol (CBD), a non-psychoactive cannabinoid from Cannabis sativa L., has been here performed on chronic myelogenous leukemia cancer cells, using an optimized chemo-proteomic stage, which links Drug Affinity Responsive Target Stability with Limited Proteolysis Multiple Reaction Monitoring approaches. The obtained results showed the ability of CBD to target simultaneously some potential protein partners, corroborating its well-known poly-pharmacology activity. In human chronic myelogenous leukemia K562 cancer cells, the most fascinating protein partner was identified as the 116 kDa U5 small nuclear ribonucleoprotein element called EFTUD2, which fits with the spliceosome complex. The binding mode of this oncogenic protein with CBD was clarified using mass spectrometry-based and in silico analysis.

3.
Phytother Res ; 38(3): 1400-1461, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232725

RESUMEN

Neuropsychiatric disorders are anticipated to be a leading health concern in the near future, emphasizing an outstanding need for the development of new effective therapeutics to treat them. Stilbenes, with resveratrol attracting the most attention, are an example of multi-target compounds with promising therapeutic potential for a broad array of neuropsychiatric and neurological conditions. This review is a comprehensive summary of the current state of research on stilbenes in several neuropsychiatric and neurological disorders such as depression, anxiety, schizophrenia, autism spectrum disorders, epilepsy, traumatic brain injury, and neurodegenerative disorders. We describe and discuss the results of both in vitro and in vivo studies. The majority of studies concentrate on resveratrol, with limited findings exploring other stilbenes such as pterostilbene, piceatannol, polydatin, tetrahydroxystilbene glucoside, or synthetic resveratrol derivatives. Overall, although extensive preclinical studies show the potential benefits of stilbenes in various central nervous system disorders, clinical evidence on their therapeutic efficacy is largely missing.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Enfermedades Neurodegenerativas , Estilbenos , Humanos , Resveratrol , Enfermedades Neurodegenerativas/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico
4.
J Pharm Biomed Anal ; 236: 115723, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37748359

RESUMEN

Phenolic compounds from Cannabis sativa L. (Cannabaceae family), in particular cannflavins, are known to possess several biological properties. However, their antiproliferative activity, being of great interest from a medicinal chemistry point of view, has not been deeply investigated so far in the literature. In the light of this, the aim of this study was to obtain an enriched fraction of polyphenols (namely PEF) from inflorescences of a non-psychoactive C. sativa (hemp) variety and to evaluate its antiproliferative activity against cancer cells, capitalizing on a new and selective extraction method for hemp polyphenols, followed by preparative flash column chromatography. Untargeted metabolomics, using a new method based on ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS), was applied here for the first time to fully characterize PEF. Then, the main phenolic compounds were quantified by HPLC-UV. The antiproliferative activity of PEF and of the isolated compounds was assessed in vitro for the first time against Caco-2 and SW480 human colon adenocarcinoma cell lines providing promising IC50 values, in comparison with the reference drug used in therapy for this cancer type. Based on these results, PEF can be considered as a new highly potential therapeutic product to be further investigated against colorectal cancer, thanks to the possible synergistic interaction of its compounds.

5.
Phytother Res ; 37(5): 1924-1937, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36583304

RESUMEN

Neuropathic pain (NP) is a chronic disease that affects the normal quality of life of patients. To date, the therapies available are only symptomatic and they are unable to reduce the progression of the disease. Many studies reported the efficacy of Cannabis sativa L. (C. sativa) on NP, but no Δ9 -tetrahydrocannabinol (Δ9 -THC)-free extracts have been investigated in detail for this activity so far. The principal aim of this work is to investigate the potential pain-relieving effect of innovative cannabidiol-rich non-psychotropic C. sativa oils, with a high content of terpenes (K2), compared to the same extract devoid of terpenes (K1). Oral administration of K2 (25 mg kg-1 ) induced a rapid and long-lasting relief of pain hypersensitivity in a mice model of peripheral neuropathy. In spinal cord samples, K2 reduced mitogen-activated protein kinase (MAPKs) levels and neuroinflammatory factors. These effects were reverted by the administration of a CB2 antagonist (AM630), but not by a CB1 antagonist (AM251). Conversely, K1 showed a lower efficacy in the absence of CB1/CB2-mediated mechanisms. In LPS-stimulated murine microglial cells (BV2), K2 reduced microglia pro-inflammatory phenotype through the downregulation of histone deacetylase 1 (HDAC-1) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IKBα) and increased interleukin-10 (IL-10) expression, an important antiinflammatory cytokine. In conclusion, these results suggested that K2 oral administration attenuated NP symptoms by reducing spinal neuroinflammation and underline the important role of the synergism between cannabinoids and terpenes.


Asunto(s)
Cannabidiol , Cannabis , Neuralgia , Receptor Cannabinoide CB2 , Animales , Ratones , Cannabidiol/farmacología , Cannabis/química , Microglía , Neuralgia/tratamiento farmacológico , Enfermedades Neuroinflamatorias , Aceites , Calidad de Vida , Receptor Cannabinoide CB2/efectos de los fármacos , Receptor Cannabinoide CB2/metabolismo
6.
Antioxidants (Basel) ; 11(2)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35204092

RESUMEN

In this study, an autochthonous variety of sweet cherry (Prunus avium L.), namely "Moretta di Vignola", was processed to prepare extracts rich in polyphenols, which were characterized by high-performance liquid chromatography (HPLC) separation coupled to UV/DAD and ESI-MSn analysis. Then, a sweet cherry anthocyanin-rich extract (ACE) was prepared, fully characterized and tested for its activity against Parkinson's disease (PD) in cellular (BV2 microglia and SH-SY5Y neuroblastoma) and in Drosophila melanogaster rotenone (ROT)-induced model. The extract was also evaluated for its antioxidant activity on Caenorhabditis elegans by assessing nematode resistance to thermal stress. In both cell lines, ACE reduced ROT-induced cell death and it decreased, alone, cellular reactive oxygen species (ROS) content while reinstating control-like ROS values after ROT-induced ROS rise, albeit at different concentrations of both compounds. Moreover, ACE mitigated SH-SY5Y cell cytotoxicity in a non-contact co-culture assay with cell-free supernatants from ROT-treated BV-2 cells. ACE, at 50 µg/mL, ameliorated ROT (250 µM)-provoked spontaneous (24 h duration) and induced (after 3 and 7 days) locomotor activity impairment in D. melanogaster and it also increased survival and counteracted the decrease in fly lifespan registered after exposure to the ROT. Moreover, heads from flies treated with ACE showed a non-significant decrease in ROS levels, while those exposed to ROT markedly increased ROS levels if compared to controls. ACE + ROT significantly placed the ROS content to intermediate values between those of controls and ROT alone. Finally, ACE at 25 µg/mL produced a significant increase in the survival rate of nematodes submitted to thermal stress (35 °C, 6-8 h), at the 2nd and 9th day of adulthood. All in all, ACE from Moretta cherries can be an attractive candidate to formulate a nutraceutical product to be used for the prevention of oxidative stress-induced disorders and related neurodegenerative diseases.

7.
Phytother Res ; 36(2): 914-927, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35107862

RESUMEN

In this study, extracts from non-psychoactive Cannabis sativa L. varieties were characterized by means of ultra high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) and their antiproliferative activity was assessed in vitro. The human chronic myelogenous leukaemia cell line K562 was chosen to investigate the mechanism of cell death. The effect on the cell cycle and cell death was analysed by flow cytometry. Proteins related to apoptosis were studied by western blotting. Mechanical properties of cells were assessed using the Micropipette Aspiration Technique (MAT). The results indicated that the cannabidiol (CBD)-rich extract inhibited cell proliferation of K562 cell line in a dose-dependent manner and induced apoptosis via caspase 3 and 7 activation. A significant decrease in the mitochondrial membrane potential was detected, together with the release of cytochrome c into the cytosol. The main apoptotic markers were not involved in the mechanism of cell death. The extract was also able to modify the mechanical properties of cells. Thus, this hemp extract and its pure component CBD deserve further investigation for a possible application against myeloproliferative diseases, also in association with other anticancer drugs.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Leucemia Mielógena Crónica BCR-ABL Positiva , Apoptosis , Cannabidiol/química , Cannabidiol/farmacología , Cannabinoides/farmacología , Cannabis/química , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Extractos Vegetales/química , Extractos Vegetales/farmacología
8.
Antioxidants (Basel) ; 10(11)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34829526

RESUMEN

In this study, the phenol loading and antioxidant activity of wool yarn prepared with the aqueous extract of onion (Allium cepa L.) skin was enhanced by implementing the dyeing process with the use of alum as a mordant. Spectrophotometric and chromatographic methods were applied for the characterization of polyphenolic substances loaded on the wool yarn. The antioxidant/anti-inflammatory properties were evaluated by determining the level of intra- and extra-cellular reactive oxygen species (ROS) production in keratinocytes and dermal fibroblasts pre-treated with lipopolysaccharide put in contact with artificial sweat. An elevated dye uptake on wool was observed for the pre-mordanted sample, as demonstrated by high absorbance values in the UV-Visible spectral range. Chromatographic results showed that protocatechuic acid and its glucoside were the main phenolic acid released in artificial sweat by the wool yarns, while quercetin-4'-glucoside and its aglycone quercetin were more retained. The extract released from the textile immersed in artificial sweat showed a significant reducing effect on the intra-and extracellular ROS levels in the two cell lines considered. Cytofluorimetric analyses demonstrated that the selected mordant was safe at the concentration used in the dyeing procedure. Therefore, alum pre-mordanted textiles dyed with onion-skin extracts may represent an interesting tool against skin diseases.

9.
J Pharm Biomed Anal ; 192: 113633, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33039911

RESUMEN

Cannabidiol (CBD) is a bioactive terpenophenolic compound isolated from Cannabis sativa L. It is known to possess several properties of pharmaceutical interest, such as antioxidant, anti-inflammatory, anti-microbial, neuroprotective and anti-convulsant, being it active as a multi-target compound. From a therapeutic point of view, CBD is most commonly used for seizure disorder in children. CBD is present in both medical and fiber-type C. sativa plants, but, unlike Δ9-tetrahydrocannabinol (THC), it is a non-psychoactive compound. Non-psychoactive or fiber-type C. sativa (also known as hemp) differs from the medical one, since it contains only low levels of THC and high levels of CBD and related non-psychoactive cannabinoids. In addition to medical Cannabis, which is used for many different therapeutic purposes, a great expansion of the market of hemp plant material and related products has been observed in recent years, due to its usage in many fields, including food, cosmetics and electronic cigarettes liquids (commonly known as e-liquids). In this view, this work is focused on recent advances on sample preparation strategies and analytical methods for the chemical analysis of CBD and related compounds in both C. sativa plant material, its derived products and biological samples. Since sample preparation is considered to be a crucial step in the development of reliable analytical methods for the determination of natural compounds in complex matrices, different extraction methods are discussed. As regards the analysis of CBD and related compounds, the application of both separation and non-separation methods is discussed in detail. The advantages, disadvantages and applicability of the different methodologies currently available are evaluated. The scientific interest in the development of portable devices for the reliable analysis of CBD in vegetable and biological samples is also highlighted.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Sistemas Electrónicos de Liberación de Nicotina , Niño , Dronabinol , Humanos
10.
Nat Prod Res ; 35(24): 5888-5893, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32748632

RESUMEN

In this study, Thymus numidicus Poir. plant material was collected from two different locations in north-western Tunisia and the aerial parts essential oils (EOs) were extracted via hydro-distillation. Gas chromatography coupled to mass spectrometry (GC-MS) and flame ionisation detection (GC-FID) were used for the qualitative analysis and quantification of the volatile constituents. Thymol (50.1-52.8%) was identified as the main compound of both EOs. To evaluate the potential application of the EOs as antifungal agents, the in vitro inhibitory effects were tested against six fungal strains; a strong antifungal activity of one sample was observed (MIC = 40-400 µg/mL). The in vitro antiproliferative activity was investigated on two human cancer cell lines, i.e. the colonic (HCT116) and breast adenocarcinoma (MCF7) using the colourimetric MTT assay. Again, the same sample demonstrated to possess good antiproliferative activity against both cancer cell lines, with IC50 values of 26.9 and 11.7 µg/mL, respectively.


Asunto(s)
Aceites Volátiles , Thymus (Planta) , Antifúngicos/farmacología , Cromatografía de Gases y Espectrometría de Masas , Humanos , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Timol
11.
Microorganisms ; 8(2)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059431

RESUMEN

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen responsible for a wide range of clinical conditions, from mild infections to life-threatening nosocomial biofilm-associated diseases, which are particularly severe in susceptible individuals. The aim of this in vitro study was to assess the effects of an Albanian propolis on several virulence-related factors of P. aeruginosa, such as growth ability, biofilm formation, extracellular DNA (eDNA) release and phenazine production. To this end, propolis was processed using three different solvents and the extracted polyphenolic compounds were identified by means of high performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) analysis. As assessed by a bioluminescence-based assay, among the three propolis extracts, the ethanol (EtOH) extract was the most effective in inhibiting both microbial growth and biofilm formation, followed by propylene glycol (PG) and polyethylene glycol 400 (PEG 400) propolis extracts. Furthermore, Pseudomonas exposure to propolis EtOH extract caused a decrease in eDNA release and phenazine production. Finally, caffeic acid phenethyl ester (CAPE) and quercetin decreased upon propolis EtOH extract exposure to bacteria. Overall, our data add new insights on the anti-microbial properties of a natural compound, such as propolis against P. aeruginosa. The potential implications of these findings will be discussed.

12.
Molecules ; 25(3)2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-31991684

RESUMEN

Pilidiella granati, also known as Coniella granati, is the etiological agent of pomegranate fruit dry rot. This fungal pathogen is also well-known as responsible for both plant collar rot and leaf spot. Because of its aggressiveness and the worldwide diffusion of pomegranate crops, the selection of cultivars less susceptible to this pathogen might represent an interesting preventive control measure. In the present investigation, the role of polyphenols in the susceptibility to P. granati of the two royalties-free pomegranate cultivars Wonderful and Mollar de Elche was compared. Pomegranate fruit were artificially inoculated and lesion diameters were monitored. Furthermore, pathogen DNA was quantified at 12-72 h post-inoculation within fruit rind by a real time PCR assay setup herein, and host total RNA was used in expression assays of genes involved in host-pathogen interaction. Similarly, protein extracts were employed to assess the specific activity of enzymes implicated in defense mechanisms. Pomegranate phenolic compounds were evaluated by HPLC-ESI-MS and MS2. All these data highlighted 'Wonderful' as less susceptible to P. granati than 'Mollar de Elche'. In the first cultivar, the fungal growth seemed controlled by the activation of the phenylpropanoid pathway, the production of ROS, and the alteration of fungal cell wall. Furthermore, antifungal compounds seemed to accumulate in 'Wonderful' fruit following inoculation. These data suggest that pomegranate polyphenols have a protective effect against P. granati infection and their content might represent a relevant parameter in the selection of the most suitable cultivars to reduce the economic losses caused by this pathogen.


Asunto(s)
Resistencia a la Enfermedad , Micromonosporaceae/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Polifenoles/metabolismo , Granada (Fruta) , Frutas/metabolismo , Frutas/microbiología , Granada (Fruta)/metabolismo , Granada (Fruta)/microbiología
13.
Molecules ; 24(3)2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30754712

RESUMEN

The aqueous extract of dry onion skin waste from the 'Dorata di Parma' cultivar was tested as a new source of biomolecules for the production of colored and biofunctional wool yarns, through environmentally friendly dyeing procedures. Specific attention was paid to the antioxidant and UV protection properties of the resulting textiles. On the basis of spectrophotometric and mass spectrometry analyses, the obtained deep red-brown color was assigned to quercetin and its glycoside derivatives. The Folin⁻Ciocalteu method revealed good phenol uptakes on the wool fiber (higher than 27% for the textile after the first dyeing cycle), with respect to the original total content estimated in the water extract (78.50 ± 2.49 mg equivalent gallic acid/g onion skin). The manufactured materials showed remarkable antioxidant activity and ability to protect human skin against lipid peroxidation following UV radiation: 7.65 ± 1.43 (FRAP assay) and 13.60 (ORAC assay) mg equivalent trolox/g textile; lipid peroxidation inhibition up to 89.37%. This photoprotective and antioxidant activity were therefore ascribed to the polyphenol pool contained in the outer dried gold skins of onion. It is worth noting that citofluorimetric analysis demonstrated that the aqueous extract does not have a significative influence on cell viability, neither is capable of inducing a proapoptotic effect.


Asunto(s)
Antioxidantes/farmacología , Cebollas/química , Polifenoles/farmacología , Protectores contra Radiación/farmacología , Piel/efectos de los fármacos , Fibra de Lana/análisis , Animales , Antioxidantes/química , Supervivencia Celular , Ácido Gálico , Glicósidos/química , Glicósidos/farmacología , Humanos , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/efectos de la radiación , Espectrometría de Masas , Ratones , Extractos Vegetales/química , Polifenoles/química , Quercetina/análogos & derivados , Quercetina/química , Células RAW 264.7 , Protectores contra Radiación/química , Piel/efectos de la radiación , Espectrofotometría , Industria Textil
14.
J Pharm Biomed Anal ; 166: 364-370, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30708235

RESUMEN

Aloysia polystachya (Griseb. et Moldenke) has not been deeply investigated in past years and currently data about its chemical composition are limited. Phenolic compounds characterization can be very difficult in vegetable matrices, owing to bonds to sugar moieties or conjugation, giving rise to complex structures. In this work, methanolic extracts of Aloysia polystachya leaves were analyzed by HPLC-ESI-MS, the favourite technique for the separation and quantification of their polyphenols. To assess the complete characterization and quantification of the phenylpropanoid fraction, three different MS techniques have been coupled to HPLC: ion trap mass spectrometry (Ion Trap LC/MS), quadrupole-time of flight high resolution mass spectrometry (Q-TOF HRMS) and triple-quadrupole (TQ LC/MS) for the quantification. Eleven phenylpropanoid glycosides were identified and quantified and, among them, the compounds forsythoside A, plantainoside C, purpureaside D, martynoside and its two isomers were detected for the first time to the best of our knowledge. The results presented here could be helpful to assess the quality of this plant and could further contribute to the chemotaxonomy of the genus.


Asunto(s)
Glicósidos/análisis , Extractos Vegetales/química , Hojas de la Planta/química , Polifenoles/análisis , Verbenaceae/química , Cromatografía Líquida de Alta Presión , Glicósidos/química , Límite de Detección , Espectrometría de Masas , Estructura Molecular , Polifenoles/química , Extracción en Fase Sólida
15.
Biomed Res Int ; 2018: 1691428, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30627539

RESUMEN

In the last decades, a lot of attention has been paid to the compounds present in medicinal Cannabis sativa L., such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), and their effects on inflammation and cancer-related pain. The National Cancer Institute (NCI) currently recognizes medicinal C. sativa as an effective treatment for providing relief in a number of symptoms associated with cancer, including pain, loss of appetite, nausea and vomiting, and anxiety. Several studies have described CBD as a multitarget molecule, acting as an adaptogen, and as a modulator, in different ways, depending on the type and location of disequilibrium both in the brain and in the body, mainly interacting with specific receptor proteins CB1 and CB2. CBD is present in both medicinal and fibre-type C. sativa plants, but, unlike Δ9-THC, it is completely nonpsychoactive. Fibre-type C. sativa (hemp) differs from medicinal C. sativa, since it contains only few levels of Δ9-THC and high levels of CBD and related nonpsychoactive compounds. In recent years, a number of preclinical researches have been focused on the role of CBD as an anticancer molecule, suggesting CBD (and CBD-like molecules present in the hemp extract) as a possible candidate for future clinical trials. CBD has been found to possess antioxidant activity in many studies, thus suggesting a possible role in the prevention of both neurodegenerative and cardiovascular diseases. In animal models, CBD has been shown to inhibit the progression of several cancer types. Moreover, it has been found that coadministration of CBD and Δ9-THC, followed by radiation therapy, causes an increase of autophagy and apoptosis in cancer cells. In addition, CBD is able to inhibit cell proliferation and to increase apoptosis in different types of cancer models. These activities seem to involve also alternative pathways, such as the interactions with TRPV and GRP55 receptor complexes. Moreover, the finding that the acidic precursor of CBD (cannabidiolic acid, CBDA) is able to inhibit the migration of breast cancer cells and to downregulate the proto-oncogene c-fos and the cyclooxygenase-2 (COX-2) highlights the possibility that CBDA might act on a common pathway of inflammation and cancer mechanisms, which might be responsible for its anticancer activity. In the light of all these findings, in this review we explore the effects and the molecular mechanisms of CBD on inflammation and cancer processes, highlighting also the role of minor cannabinoids and noncannabinoids constituents of Δ9-THC deprived hemp.


Asunto(s)
Antioxidantes/química , Antioxidantes/uso terapéutico , Cannabinoides/química , Cannabinoides/uso terapéutico , Cannabis/química , Estrés Oxidativo/efectos de los fármacos , Animales , Humanos , Proto-Oncogenes Mas
16.
Nat Prod Res ; 32(5): 544-551, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28514868

RESUMEN

In this study, the activity of essential oils (EOs) against microorganisms involved in oral diseases was evaluated. Fourteen EOs were selected and subjected to gas chromatographic analysis, including Illicium verum, Eucaliptus globulus, Eugenia caryophyllata, Leptospermum scoparium, Mentha arvensis, Mentha piperita, Myrtus communis, Salvia officinalis, Melaleuca alternifolia, Rosmarinus officinalis, Lavandula x intermedia, Thymus capitatus and Thymus vulgaris. These EOs were tested for their antimicrobial activity on Streptococcus mutans and Lactobacillus species clinically isolated from dental surgery patients. The antibacterial activity was evaluated by means of the disc diffusion and the minimum inhibitory concentration (MIC). Five EOs, having shown an interesting antimicrobial activity, were selected for a second screening in combination between them and with chlorhexidine. From the second assays, two EO-EO and three EO-chlorhexidine associations gave interesting results as potential constituents of mouthwashes, especially for the contribution of oxygenated monoterpenes, including menthol, thymol and carvacrol.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Aceites Volátiles/química , Aceites Volátiles/farmacología , Antibacterianos/farmacología , Cimenos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Lactobacillus/efectos de los fármacos , Lactobacillus/patogenicidad , Lamiaceae/química , Mentha/química , Pruebas de Sensibilidad Microbiana , Monoterpenos/química , Monoterpenos/farmacología , Boca/microbiología , Antisépticos Bucales/química , Antisépticos Bucales/farmacología , Myrtus/química , Rosmarinus/química , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/patogenicidad , Timol/farmacología , Thymus (Planta)/química
17.
J Pharm Biomed Anal ; 146: 1-6, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-28841426

RESUMEN

The genus Echinacea (Asteraceae) includes species traditionally used in phytotherapy. Among them, Echinacea pallida (Nutt.) Nutt. root extracts are characterized by a representative antiproliferative activity, due to the presence of acetylenic compounds. In this study, supercritical fluid extraction (SFE) was applied and compared with conventional Soxhlet extraction (SE) in order to obtain a bioactive extract highly rich in polyacetylenes and polyenes from E. pallida roots. The composition of the extracts was monitored by means of HPLC-UV/DAD and HPLC-ESI-MSn by using an Ascentis Express C18 column (150mm×3.0mm I.D., 2.7µm, Supelco, Bellefonte, PA, USA) with a mobile phase composed of (A) water and (B) acetonitrile, under gradient elution. By keeping SFE time at the threshold of 1h (15min static and 45min dynamic for 1 cycle) with the oven temperature set at 40-45°C and 90bar of pressure, an overall extraction yield of 1.18-1.21% (w/w) was obtained, with a high selectivity for not oxidized lipophilic compounds. The biological activity of the extracts was evaluated against human non-small lung A549 and breast carcinoma MCF-7 cancer cell lines. The cytotoxic effect of the SFE extract was more pronounced towards the MCF-7 than the A549 cancer cells, with IC50 values ranging from 21.01±2.89 to 31.11±2.l4µg/mL; cell viability was affected mainly between 24 and 48h of exposure. The results show the possibility of a new "green" approach to obtain extracts highly rich in genuine polyacetylenes and polyenes from E. pallida roots. The bioactivity evaluation confirmed the cytotoxicity of E. pallida extracts against the considered cancer cell lines, especially against MCF-7 cells, thus suggesting to represent a valuable tool for applicative purposes in cancer prevention.


Asunto(s)
Echinacea/química , Extractos Vegetales/química , Raíces de Plantas/química , Polienos/química , Poliinos/química , Células A549 , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Células MCF-7 , Fitoterapia/métodos , Extractos Vegetales/farmacología , Polienos/farmacología , Poliinos/farmacología
18.
J Pharm Biomed Anal ; 142: 28-34, 2017 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-28494336

RESUMEN

Humulus lupulus L., commonly named hop, is well-known for its sedative and estrogenic activity. While hop cones are widely characterized, only few works have been carried out on the young shoots of this plant. In the light of this, the aim of this study was to identify for the first time the flavonoids present in young hop shoots and to compare the composition of samples harvested from different locations in Northern Italy with their antioxidant activity. The samples were extracted by means of dynamic maceration with methanol. The HPLC-UV/DAD, HPLC-ESI-MS and MS2 analysis were carried out by using an Ascentis C18 column (250×4.6mm I.D., 5µm), with a mobile phase composed of 0.1M formic acid in both water and acetonitrile, under gradient elution. Quercetin and kaempferol glycosides were the main compounds identified and quantified in hop shoot extracts. Total flavonols ranged from 2698±185 to 517±48µg/g (fresh weight). The antioxidant activity was determined by means of the radical scavenging activity assay against diphenylpicrylhydrazyl (DPPH) and by using a photochemiluscence assay with a Photochem® apparatus. The results showed that hop shoots represent a new source of flavonols; therefore, they can be useful for a possible incorporation in the diet as a functional food or applied in the nutraceutical ambit.


Asunto(s)
Humulus , Antioxidantes , Flavonoides , Flavonoles , Italia , Extractos Vegetales , Brotes de la Planta
19.
J Chromatogr A ; 1480: 20-31, 2017 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-27989467

RESUMEN

The present study was aimed at the development of a new analytical method for the comprehensive multi-component analysis of polyphenols in Punica granatum L. (pomegranate) juice and peel. While pomegranate juice was directly analysed after simple centrifugation, different extraction techniques, including maceration, heat reflux extraction, ultrasound-assisted extraction and microwave-assisted extraction, were compared in order to obtain a high yield of the target analytes from pomegranate peel. Dynamic maceration with a mixture of water and ethanol 80:20 (v/v) with 0.1% of hydrochloric acid as the extraction solvent provided the best result in terms of recovery of pomegranate secondary metabolites. The quali- and quantitative analysis of pomegranate polyphenols was performed by high-performance liquid chromatography with diode array and electrospray ionization-mass spectrometry detection. The application of fused-core column technology allowed us to obtain an improvement of the chromatographic performance in comparison with that of conventional particulate stationary phases, thus enabling a good separation of all constituents in a shorter time and with low solvent usage. The analytical method was completely validated to show compliance with the International Conference on Harmonization of Technical Requirements for the Registration of Pharmaceuticals for Human Use guidelines and successfully applied to the characterisation of commercial and experimental pomegranate samples, thus demonstrating its efficiency as a tool for the fingerprinting of this plant material. The quantitative data collected were submitted to principal component analysis, in order to highlight the possible presence of pomegranate samples with high content of secondary metabolites. From the statistical analysis, four experimental samples showed a notable content of bioactive compounds in the peels, while commercial ones still represent the best source of healthy juice.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Lythraceae/química , Lythraceae/metabolismo , Polifenoles/análisis , Metabolismo Secundario , Espectrometría de Masa por Ionización de Electrospray/métodos , Cromatografía Líquida de Alta Presión/instrumentación , Jugos de Frutas y Vegetales/análisis , Polifenoles/química
20.
J Med Chem ; 59(16): 7598-616, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27411733

RESUMEN

Flavonoids represent a potential source of new antitrypanosomatidic leads. Starting from a library of natural products, we combined target-based screening on pteridine reductase 1 with phenotypic screening on Trypanosoma brucei for hit identification. Flavonols were identified as hits, and a library of 16 derivatives was synthesized. Twelve compounds showed EC50 values against T. brucei below 10 µM. Four X-ray crystal structures and docking studies explained the observed structure-activity relationships. Compound 2 (3,6-dihydroxy-2-(3-hydroxyphenyl)-4H-chromen-4-one) was selected for pharmacokinetic studies. Encapsulation of compound 2 in PLGA nanoparticles or cyclodextrins resulted in lower in vitro toxicity when compared to the free compound. Combination studies with methotrexate revealed that compound 13 (3-hydroxy-6-methoxy-2-(4-methoxyphenyl)-4H-chromen-4-one) has the highest synergistic effect at concentration of 1.3 µM, 11.7-fold dose reduction index and no toxicity toward host cells. Our results provide the basis for further chemical modifications aimed at identifying novel antitrypanosomatidic agents showing higher potency toward PTR1 and increased metabolic stability.


Asunto(s)
Productos Biológicos/farmacología , Flavonoles/farmacología , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Animales , Productos Biológicos/síntesis química , Productos Biológicos/química , Línea Celular , Relación Dosis-Respuesta a Droga , Flavonoles/síntesis química , Flavonoles/química , Humanos , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA