Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Langmuir ; 29(37): 11656-66, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23968161

RESUMEN

Neutron reflectivity, NR, and surface tension, ST, have been used to study the surface adsorption properties at the air-water interface of the anionic surfactant sodium polyethylene glycol monododecyl ether sulfate (sodium lauryl ether sulfate, SLES) in the presence of Al(3+) multivalent counterions, by the addition of AlCl3. In the absence of AlCl3 and at low AlCl3 concentrations monolayer adsorption is observed. With increasing AlCl3 concentration, surface multilayer formation is observed, driven by SLES/Al(3+) complex formation. The onset of multilayer formation occurs initially as a single bilayer or a multilayer structure with a limited number of bilayers, N, ≤3, and ultimately at higher AlCl3 concentrations N is large, >20. The evolution in the surface structure is determined by the surfactant and AlCl3 concentrations, and the size of the polyethylene oxide group in the different SLES surfactants studied. From the NR data, approximate surface phase diagrams are constructed, and the evolution of the surface structure with surfactant and electrolyte concentration is shown to be dependent on the size of the polyethylene oxide group. As the polyethylene oxide group increases in size the multilayer formation requires increasingly higher surfactant and AlCl3 concentrations to promote the formation. This is attributed to the increased steric hindrance of the polyethylene oxide group disrupting SLES/Al(3+) complex formation.


Asunto(s)
Compuestos de Aluminio/química , Cloruros/química , Polietilenglicoles/química , Tensoactivos/química , Aire , Cloruro de Aluminio , Tamaño de la Partícula , Soluciones , Propiedades de Superficie , Agua/química
2.
Langmuir ; 27(14): 8867-77, 2011 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-21644533

RESUMEN

The self-assembly in aqueous solution of the acidic (AS) and lactonic (LS) forms of the sophorolipid biosurfactant, their mixtures, and their mixtures with anionic surfactant sodium dodecyl benzene sulfonate, LAS, has been studied using predominantly small-angle neutron scattering, SANS, at relatively low surfactant concentrations of <30 mM. The more hydrophobic lactonic sophorolipid forms small unilamellar vesicles at low surfactant concentrations, in the concentration range of 0.2 to 3 mM, and transforms via a larger unilamellar vesicle structure at 7 mM to a disordered dilute phase of tubules at higher concentrations, 10 to 30 mM. In marked contrast, the acidic sophorolipid is predominantly in the form of small globular micelles in the concentration range of 0.5 to 30 mM, with a lower concentration of larger, more planar aggregates (lamellar or vesicular) in coexistence. In mixtures of AS and LS, over the same concentration range, the micellar structure associated with the AS sophorolipid dominates the mixed-phase behavior. In mixtures of anionic surfactant LAS with the AS sophorolipid, the globular micellar structure dominates over the entire composition and concentration range studied. In contrast, mixtures of LAS with the LS sophorolipid exhibit a rich evolution in phase behavior with solution composition and concentration. At low surfactant concentrations, the small unilamellar vesicle structure present for LS-rich solution compositions evolves into a globular micelle structure as the solution becomes richer in LAS. At higher surfactant concentrations, the disordered lamellar structure present for LS-rich compositions transforms to small vesicle/lamellar coexistence, to lamellar/micellar coexistence, to micellar/lamellar coexistence, and ultimately to a pure micellar phase as the solution becomes richer in LAS. The AS sophorolipid surfactant exhibits self-assembly properties similar to those of most other weakly ionic or nonionic surfactants that have relatively large headgroups. However, the more hydrophobic nature of the lactonic sophorolipid results in a more complex and unusual evolution in phase behavior with concentration and with concentration and composition when mixed with anionic surfactant LAS.


Asunto(s)
Bencenosulfonatos/química , Glucolípidos/química , Tensoactivos/química , Acetilación , Soluciones , Tensión Superficial
3.
Langmuir ; 27(14): 8854-66, 2011 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-21657229

RESUMEN

The adsorption of the lactonic (LS) and acidic (AS) forms of sophorolipid and their mixtures with the anionic surfactant sodium dodecyl benzene sulfonate (LAS) has been measured at the air/water interface by neutron reflectivity, NR. The AS and LS sophorolipids adsorb with Langmuir-like adsorption isotherms. The more hydrophobic LS is more surface active than the AS, with a lower critical micellar concentration, CMC, and stronger surface adsorption, with an area/molecule ∼70 Å(2) compared with 85 Å(2) for the AS. The acidic sophorolipid shows a maximum in its adsorption at the CMC which appears to be associated with a mixture of different isomeric forms. The binary LS/AS and LS/LAS mixtures show a strong surface partitioning in favor of the more surface active and hydrophobic LS component but are nevertheless consistent with ideal mixing at the interface. In contrast, the surface composition of the AS/LAS mixture is much closer to the solution composition, but the surface mixing is nonideal and can be accounted for by regular solution theory, RST. In the AS/LS/LAS ternary mixtures, the surface adsorption is dominated by the sophorolipid, and especially the LS component, in a way that is not consistent with the observations for the binary mixtures. The extreme partitioning in favor of the sophorolipid for the LAS/LS/AS (1:2) mixtures is attributed to a reduction in the packing constraints at the surface due to the AS component. Measurements of the surface structure reveal a compact monolayer for LS and a narrow solvent region for LS, LS/AS, and LS/LAS mixtures, consistent with the more hydrophobic nature of the LS component. The results highlight the importance of the relative packing constraints on the adsorption of multicomponent mixtures, and the impact of the lactonic form of the sophorolipid on the adsorption of the sophorolipid/LAS mixtures.


Asunto(s)
Aire , Bencenosulfonatos/química , Glucolípidos/química , Tensoactivos/química , Agua/química , Acetilación , Adsorción , Micelas , Difracción de Neutrones , Tensión Superficial
4.
Langmuir ; 21(8): 3354-61, 2005 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-15807574

RESUMEN

We have determined the structural conformations of human lactoferrin adsorbed at the air/water interface by neutron reflectivity (NR) and its solution structure by small angle neutron scattering (SANS). The neutron reflectivity measurements revealed a strong structural unfolding of the molecule when adsorbed at the interface from a pH 7 phosphate buffer solution (PBS with a total ionic strength at 4.5 mM) over a wide concentration range. Two distinct regions, a top dense layer of 15-20 angstroms on the air side and a bottom diffuse layer of some 50 angstroms into the aqueous subphase, characterized the unfolded interfacial layer. At a concentration around 1 g dm(-3), close to the physiological concentration of lactoferrin in biological fluids, the adsorbed amount was 5.5 x 10(-8) mol m(-2) in the absence of NaCl, but the addition of 0.3 M NaCl reduced protein adsorption to 3.5 x 10(-8) mol m(-2). Although the polypeptide distributions at the interface remained similar, quantitative analysis showed that the addition of NaCl reduced the layer thickness. Parallel measurements of lactoferrin adsorption in D2O instead of null reflecting water confirmed the unfolded structure at the interface. Furthermore, the D2O data indicated that the polypeptide in the top layer was predominantly protruded out of water, consistent with it being hydrophobic. In contrast, the scattering intensity profiles from SANS were well described by a cylindrical model with a diameter of 47 angstroms and a length of 105 angstroms in the presence of 0.3 M NaCl, indicating a retention of the globular framework in the bulk solution. In the absence of NaCl but with the same amount of phosphate buffer, the length of the cylinder increased to some 190 angstroms and the diameter remained constant. The length increase is indicative of changes in distance and orientation between the bilobal monomers due to the change in charge interactions. The results thus demonstrate that the surface structural unfolding was caused by the exposure of the protein molecule to the unsymmetrical energetic balance following surface adsorption.


Asunto(s)
Lactoferrina/química , Pliegue de Proteína , Adsorción , Aire , Tampones (Química) , Deuterio/química , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Lactoferrina/fisiología , Neutrones , Unión Proteica , Dispersión de Radiación , Cloruro de Sodio/farmacología , Propiedades de Superficie , Tensoactivos/análisis , Tensoactivos/química , Factores de Tiempo , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA