Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Curr Top Med Chem ; 24(8): 667-685, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549525

RESUMEN

Peptides acquire target affinity based on the combination of residues in their sequences and the conformation formed by their flexible folding, an ability that makes them very attractive biomaterials in therapeutic, diagnostic, and assay fields. With the development of computer technology, computer-aided design and screening of affinity peptides has become a more efficient and faster method. This review summarizes successful cases of computer-aided design and screening of affinity peptide ligands in recent years and lists the computer programs and online servers used in the process. In particular, the characteristics of different design and screening methods are summarized and categorized to help researchers choose between different methods. In addition, experimentally validated sequences are listed, and their applications are described, providing directions for the future development and application of computational peptide screening and design.


Asunto(s)
Simulación por Computador , Péptidos , Ligandos , Péptidos/química , Diseño de Fármacos , Diseño Asistido por Computadora , Humanos
2.
Biofactors ; 50(1): 33-57, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37646383

RESUMEN

Peptides and peptide aptamers have emerged as promising molecules for a wide range of biomedical applications due to their unique properties and versatile functionalities. The screening strategies for identifying peptides and peptide aptamers with desired properties are discussed, including high-throughput screening, display screening technology, and in silico design approaches. The synthesis methods for the efficient production of peptides and peptide aptamers, such as solid-phase peptide synthesis and biosynthesis technology, are described, along with their advantages and limitations. Moreover, various modification techniques are explored to enhance the stability, specificity, and pharmacokinetic properties of peptides and peptide aptamers. This includes chemical modifications, enzymatic modifications, biomodifications, genetic engineering modifications, and physical modifications. Furthermore, the review highlights the diverse biomedical applications of peptides and peptide aptamers, including targeted drug delivery, diagnostics, and therapeutic. This review provides valuable insights into the advancements in screening, synthesis, modification, and biomedical applications of peptides and peptide aptamers. A comprehensive understanding of these aspects will aid researchers in the development of novel peptide-based therapeutics and diagnostic tools for various biomedical challenges.


Asunto(s)
Aptámeros de Nucleótidos , Aptámeros de Péptidos , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/uso terapéutico , Técnica SELEX de Producción de Aptámeros , Péptidos/uso terapéutico , Sistemas de Liberación de Medicamentos
3.
Cancer Cell Int ; 20: 33, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32015693

RESUMEN

BACKGROUND: Interleukin-24 (IL-24) is a therapeutic gene for melanoma, which can induce melanoma cell apoptosis. Mesenchymal stem cells (MSCs) show promise as a carrier to delivery anti-cancer factors to tumor tissues. Induced pluripotent stem cells (iPSCs) are an alternative source of mesenchymal stem cells (MSCs). We previously developed a novel non-viral gene targeting vector to target IL-24 to human iPSCs. This study aims to investigate whether MSCs derived from the iPSCs with the site-specific integration of IL-24 can inhibit the growth of melanoma in a tumor-bearing mouse model via retro-orbital injection. METHODS: IL-24-iPSCs were differentiated into IL-24-iMSCs in vitro, of which cellular properties and potential of differentiation were characterized. The expression of IL-24 in the IL-24-iMSCs was measured by qRT-PCR, Western Blotting, and ELISA analysis. IL-24-iMSCs were transplanted into the melanoma-bearing mice by retro-orbital intravenous injection. The inhibitory effect of IL-24-iMSCs on the melanoma cells was investigated in a co-culture system and tumor-bearing mice. The molecular mechanisms underlying IL-24-iMSCs in exerting anti-tumor effect were also explored. RESULTS: iPSCs-derived iMSCs have the typical profile of cell surface markers of MSCs and have the ability to differentiate into osteoblasts, adipocytes, and chondroblasts. The expression level of IL-24 in IL-24-iMSCs reached 95.39 ng/106 cells/24 h, which is significantly higher than that in iMSCs, inducing melanoma cells apoptosis more effectively in vitro compared with iMSCs. IL-24-iMSCs exerted a significant inhibitory effect on the growth of melanoma in subcutaneous mouse models, in which the migration of IL-24-iMSCs to tumor tissue was confirmed. Additionally, increased expression of Bax and Cleaved caspase-3 and down-regulation of Bcl-2 were observed in the mice treated with IL-24-iMSCs. CONCLUSION: MSCs derived from iPSCs with the integration of IL-24 at rDNA locus can inhibit the growth of melanoma in tumor-bearing mouse models when administrated via retro-orbital injection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA