Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Hum Exp Toxicol ; 43: 9603271241282584, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39240701

RESUMEN

OBJECTIVE: Environmental factors such as noise and music can significantly impact physiological responses, including inflammation. This study explored how environmental factors like noise and music affect lipopolysaccharide (LPS)-induced inflammation, with a focus on systemic and organ-specific responses. MATERIALS AND METHODS: 24 Wistar rats were divided into four groups (n = 6 per group): Control group, LPS group, noise-exposed group, and music-exposed group. All rats, except for the Control group, received 10 mg/kg LPS intraperitoneally. The rats in the noise-exposed group were exposed to 95 dB noise, and the music-exposed group listened to Mozart's K. 448 music (65-75 dB) for 1 h daily over 7 days. An enzyme-linked immunosorbent assay was utilized to detect the levels of inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), in serum and tissues (lung, liver, and kidney). Western blot examined the phosphorylation levels of nuclear factor-κB (NF-κB) p65 in organ tissues. RESULTS: Compared with the Control group, LPS-induced sepsis rats displayed a significant increase in the levels of TNF-α and IL-1ß in serum, lung, liver, and kidney tissues, as well as a remarkable elevation in the p-NF-κB p65 protein expression in lung, liver, and kidney tissues. Noise exposure further amplified these inflammatory markers, while music exposure reduced them in LPS-induced sepsis rats. CONCLUSION: Noise exposure exacerbates inflammation by activating the NF-κB pathway, leading to the up-regulation of inflammatory markers during sepsis. On the contrary, music exposure inhibits NF-κB signaling, indicating a potential therapeutic effect in reducing inflammation.


Asunto(s)
Lipopolisacáridos , Música , Ruido , Ratas Wistar , Sepsis , Animales , Lipopolisacáridos/toxicidad , Sepsis/inmunología , Sepsis/complicaciones , Ruido/efectos adversos , Masculino , Interleucina-1beta/sangre , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Inflamación , Hígado/metabolismo , Ratas , Riñón/metabolismo , FN-kappa B/metabolismo , Citocinas/sangre , Citocinas/metabolismo
2.
Nat Prod Res ; : 1-10, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39084318

RESUMEN

The Paeonia ostii, also known as "Feng Dan" have a crucial role in folk medicine to treat lumbar muscles strain, knee osteoarthritis and cervical spondylosis. In this study, four new phenolic compounds, specifically Paeoniaostiph A-E (1-4) phenolic compounds were characterised through spectroscopic techniques, including 1D and 2D NMR, HRESIMS, UV, IR, and electronic circular dichroism computations to explore their structures. Cytotoxicity and NO production inhibition of the new phenolic compounds were also studied. The results of the cytotoxicity experiment showed that compound 1 is cytotoxic to two human cancer cell lines with IC50 values ranging from 13.3 to 13.5 µM. Compounds 1 and 2 showed certain inhibitory activity on NO production. This is the first report on isolating the components from natural sources.

3.
Fitoterapia ; 177: 106057, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38844141

RESUMEN

The pericarps of Zanthoxylum schinifolium Sieb. et Zucc were called "green huajiao", which were used as traditional folk medicine and popular seasoning in China. In this study, twenty-seven alkylamides, including a rare alkylamide containing two amide groups (1), an alkylamide with a furan ring (5), six new alkylamide analogues (2-4, 6-8), together with nineteen known alkylamides (9-27) were isolated from green huajiao. Their structures were elucidated by extensive spectroscopic analysis, including 1D, 2D NMR, HRESIMS, and UV spectra. Furthermore, compounds 5, 18, 21, and 22 exhibited weak protective activity for corticosterone-induced PC12 cells damage.


Asunto(s)
Zanthoxylum , Zanthoxylum/química , Animales , Estructura Molecular , Ratas , Células PC12 , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , China , Amidas/química , Amidas/aislamiento & purificación , Amidas/farmacología , Corticosterona
4.
Eur J Med Chem ; 274: 116548, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838547

RESUMEN

Blocking the System Xc-_ GSH_GPX4 pathway to induce ferroptosis in tumor cells is a novel strategy for cancer treatment. GPX4 serves as the core of the System Xc-/GSH/GPX4 pathway and is a predominant target for inducing ferroptosis in tumor cells. This article summarizes compounds identified in current research that directly target the GPX4 protein, including inhibitors, activators, small molecule degraders, chimeric degraders, and the application of combination therapies with other drugs, aiming to promote further research on the target and related diseases.


Asunto(s)
Fosfolípido Hidroperóxido Glutatión Peroxidasa , Humanos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Estructura Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Ferroptosis/efectos de los fármacos , Animales
5.
Sci Rep ; 14(1): 11704, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778121

RESUMEN

Chemotherapeutic agents can inhibit the proliferation of malignant cells due to their cytotoxicity, which is limited by collateral damage. Dihydroartemisinin (DHA), has a selective anti-cancer effect, whose target and mechanism remain uncovered. The present work aims to examine the selective inhibitory effect of DHA as well as the mechanisms involved. The findings revealed that the Lewis cell line (LLC) and A549 cell line (A549) had an extremely rapid proliferation rate compared with the 16HBE cell line (16HBE). LLC and A549 showed an increased expression of NRAS compared with 16HBE. Interestingly, DHA was found to inhibit the proliferation and facilitate the apoptosis of LLC and A549 with significant anti-cancer efficacy and down-regulation of NRAS. Results from molecular docking and cellular thermal shift assay revealed that DHA could bind to epidermal growth factor receptor (EGFR) molecules, attenuating the EGF binding and thus driving the suppressive effect. LLC and A549 also exhibited obvious DNA damage in response to DHA. Further results demonstrated that over-expression of NRAS abated DHA-induced blockage of NRAS. Moreover, not only the DNA damage was impaired, but the proliferation of lung cancer cells was also revitalized while NRAS was over-expression. Taken together, DHA could induce selective anti-lung cancer efficacy through binding to EGFR and thereby abolishing the NRAS signaling pathway, thus leading to DNA damage, which provides a novel theoretical basis for phytomedicine molecular therapy of malignant tumors.


Asunto(s)
Artemisininas , Proliferación Celular , Daño del ADN , Receptores ErbB , GTP Fosfohidrolasas , Neoplasias Pulmonares , Proteínas de la Membrana , Transducción de Señal , Receptores ErbB/metabolismo , Humanos , Proliferación Celular/efectos de los fármacos , Artemisininas/farmacología , Daño del ADN/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , GTP Fosfohidrolasas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Simulación del Acoplamiento Molecular , Células A549 , Ratones , Antineoplásicos/farmacología , Línea Celular Tumoral , Unión Proteica
6.
J Hazard Mater ; 473: 134668, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788577

RESUMEN

Tea saponins (TS), a natural biosurfactant extracted from tea trees, were co-ball milled with commercial micro zero-valent iron (mZVI) to produce TS modified mZVI (TS-BZVI) for efficient hexavalent chromium (Cr(VI)) removal. The findings demonstrated that TS-BZVI could nearly remove 100% of Cr(VI) within 2 h, which was 1.43 times higher than that by ball milled mZVI (BZVI) (70%). Kinetics analysis demonstrated a high degree of compatibility with the pseudo-second-order (PSO), revealing that TS-BZVI exhibited a 2.83 times faster Cr(VI) removal rate involved primarily chemisorption. Further, X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES) measurements indicated that the TS co-ball milling process improved the exposure of Fe(II) and Fe(0) on mZVI, which further promoted the Cr(VI) reduction process. Impressively, the introduction of TS increased the hydrophobicity of ZVI, effectively inhibiting the H2 evolution by 95%, thus improved electron selectivity for efficient Cr(VI) removal. Ultimately, after operating for 10 days, a simulated permeable reactive barrier (PRB) column experiment revealed that TS-BZVI had a higher Cr(VI) elimination efficiency than BZVI, indicating that TS-BZVI was promising for practical environment remediation.

7.
Phytother Res ; 38(8): 3856-3876, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38761036

RESUMEN

Enhancement of malignant cell immunogenicity to relieve immunosuppression of lung cancer microenvironment is essential in lung cancer treatment. In previous study, we have demonstrated that dihydroartemisinin (DHA), a kind of phytopharmaceutical, is effective in inhibiting lung cancer cells and boosting their immunogenicity, while the initial target of DHA's intracellular action is poorly understood. The present in-depth analysis aims to reveal the influence of DHA on the highly expressed TOM70 in the mitochondrial membrane of lung cancer. The affinity of DHA and TOM70 was analyzed by microscale thermophoresis (MST), pronase stability, and thermal stability. The functions and underlying mechanism were investigated using western blots, qRT-PCR, flow cytometry, and rescue experiments. TOM70 inhibition resulted in mtDNA damage and translocation to the cytoplasm from mitochondria due to the disruption of mitochondrial homeostasis. Further ex and in vivo findings also showed that the cGAS/STING/NLRP3 signaling pathway was activated by mtDNA and thereby malignant cells underwent pyroptosis, leading to enhanced immunogenicity of lung cancer cells in the presence of DHA. Nevertheless, DHA-induced mtDNA translocation and cGAS/STING/NLRP3 mobilization were synchronously attenuated when TOM70 was replenished. Finally, DHA was demonstrated to possess potent anti-lung cancer efficacy in vitro and in vivo. Taken together, these data confirm that TOM70 is an important target for DHA to disturb mitochondria homeostasis, which further activates STING and arouses pyroptosis to strengthen immunogenicity against lung cancer thereupon. The present study provides vital clues for phytomedicine-mediated anti-tumor therapy.


Asunto(s)
Artemisininas , Neoplasias Pulmonares , Mitocondrias , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Piroptosis , Neoplasias Pulmonares/tratamiento farmacológico , Artemisininas/farmacología , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Piroptosis/efectos de los fármacos , Ratones , Animales , Línea Celular Tumoral , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , ADN Mitocondrial , Células A549 , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos BALB C
8.
Sci Rep ; 14(1): 7733, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565963

RESUMEN

B-Myb has received considerable attention for its critical tumorigenic function of supporting DNA repair. However, its modulatory effects on chemotherapy and immunotherapy have rarely been reported in colorectal cancer. Bortezomib (BTZ) is a novel compound with chemotherapeutic and immunotherapeutic effects, but it fails to work in colorectal cancer with high B-Myb expression. The present study was designed to investigate whether B-Myb deletion in colorectal cancer could potentiate the immune efficacy of BTZ against colorectal cancer and to clarify the underlying mechanism. Stable B-Myb knockdown was induced in colorectal cancer cells, which increased apoptosis of the cancer cells relative to the control group in vitro and in vivo. We found that BTZ exhibited more favourable efficacy in B-Myb-defective colorectal cancer cells and tumor-bearing mice. BTZ treatment led to differential expression of genes enriched in the p53 signaling pathway promoted more powerful downstream DNA damage, and arrested cell cycle in B-Myb-defective colorectal cancer. In contrast, recovery of B-Myb in B-Myb-defective colorectal cancer cells abated BTZ-related DNA damage, cell cycle arrest, and anticancer efficacy. Moreover, BTZ promoted DNA damage-associated enhancement of immunogenicity, as indicated by potentiated expression of HMGB1 and HSP90 in B-Myb-defective cells, thereby driving M1 polarization of macrophages. Collectively, B-Myb deletion in colorectal cancer facilitates the immunogenic death of cancer cells, thereby further promoting the immune efficacy of BTZ by amplifying DNA damage. The present work provides an effective molecular target for colorectal cancer immunotherapy with BTZ.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Animales , Ratones , Bortezomib/farmacología , Bortezomib/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Muerte Celular Inmunogénica , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Apoptosis
9.
Eur J Med Chem ; 269: 116323, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38547735

RESUMEN

Farnesoid X receptor (FXR) is a bile acids receptor and plays a crucial role in regulating bile acids, lipids, and glucose metabolism. Previous research suggests that inhibiting FXR activation can be beneficial in reducing cholesterol and low-density lipoprotein cholesterol (LDL-C) levels, offering potential treatment options for metabolic syndrome with lipid disorders. Herein, we report p-acetylaminobenzene sulfonate derivatives as a novel scaffold of FXR antagonists by multistage screening. Among these derivatives, compound F44-A13 exhibited a half-maximal inhibitory concentration of 1.1 µM. Furthermore, compound F44-A13 demonstrated effective inhibition of FXR activation in cellular assays and exhibited high selectivity over eleven other nuclear receptors. Besides, compound F44-A13 significantly suppressed the regulation of FXR target genes Shp, Besp, and Cyp7a1, while reducing cholesterol levels in human hepatoma HepG2 cells. Pharmacological studies conducted on C57BL/6 mice further confirmed that compound F44-A13 had beneficial effects in reducing cholesterol, triglycerides, and LDL-C levels. These findings highlight that F44-A13 is a highly selective FXR antagonist that might serve as a useful molecule for further FXR studies as well as the development of FXR antagonists for the potential treatment of metabolic diseases with lipid disorders.


Asunto(s)
Ácidos y Sales Biliares , Colesterol , Ratones , Animales , Humanos , LDL-Colesterol , Ratones Endogámicos C57BL , Relación Estructura-Actividad , Colesterol/metabolismo , Ácidos y Sales Biliares/farmacología , Hígado/metabolismo
10.
RSC Adv ; 14(10): 6719-6726, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38405066

RESUMEN

Recently, researchers have been paying much attention to zero-valent iron (ZVI) in the field of pollution remediation. However, the depressed electron transport from the iron reservoir to the iron oxide shell limited the wide application of ZVI. This study was aimed at promoting the performance of microscale ZVI (mZVI) for hexavalent chromium (Cr(vi)) removal by accelerating iron cycle with the addition of boron powder. It was found that the addition of boron powder enhanced the Cr(vi) removal rate by 2.1 times, and the proportion of Cr(iii) generation after Cr(vi) removal process also increased, suggesting that boron could promote the reduction pathway of Cr(vi) to Cr(iii). By further comparing the Cr(vi) removal percentage of Fe(iii) with or without the boron powder, we found that boron powder could promote the percentage removal of Cr(vi) with Fe(iii) from 10.1% to 33.6%. Moreover, the presence of boron powder could decrease the potential gap values (ΔEp) between Fe(iii) reduction and Fe(ii) oxidation from 0.668 V to 0.556 V, further indicating that the added boron powder could act as an electron sacrificial agent to promote the reduction process of Fe(iii) to Fe(ii), and thus enhancing the reduction of Cr(vi) with Fe(ii). This study shed light on the promoted mechanism of Cr(vi) removal with boron powder and provided an environmentally friendly and efficient approach to enhance the reactivity of the mZVI powder, which would benefit the wide application of mZVI technology in the environmental remediation field.

11.
Sci Total Environ ; 918: 170620, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38320696

RESUMEN

Fine particles (PM2.5) pollution is still a severe issue in some cities in China, where the chemical characteristics of PM2.5 remain unclear due to limited studies there. Herein, we focused on PM2.5 pollution in small and medium-sized cities in key urban agglomerations and conducted a comprehensive study on the PM2.5 chemical characteristics, sources, and health risks. In the autumn and winter of 2019-2020, PM2.5 samples were collected simultaneously in four small and medium-sized cities in four key regions: Dingzhou (Beijing-Tianjin-Hebei region), Weinan (Fenwei Plain region), Fukang (Northern Slope of the Tianshan Mountain region), and Bozhou (Yangtze River Delta region). The results showed that secondary inorganic ions (43.1 %-67.0 %) and organic matter (OM, 8.6 %-36.4 %) were the main components of PM2.5 in all the cities. Specifically, Fukang with the most severe PM2.5 pollution had the highest proportion of SO42- (31.2 %), while the dominant components in other cities were NO3- and OM. The Multilinear Engine 2 (ME2) analysis identified five sources of PM2.5 in these cities. Coal combustion contributed most to PM2.5 in Fukang, but secondary sources in other cities. Combined with chemical characteristics and ME2 analysis, it was preliminarily determined that the primary emission of coal combustion had an important contribution to high SO42- in Fukang. Potential source contribution function (PSCF) analysis results showed that regional transport played an important role in PM2.5 in Dingzhou, Weinan and Bozhou, while PM2.5 in Fukang was mainly affected by short-range transport from surrounding areas. Finally, the health risk assessment indicated Mn was the dominant contributor to the total non-carcinogenic risks and Cr had higher carcinogenic risks in all cities. The findings provide a scientific basis for formulating more effective abatement strategies for PM2.5 pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Ciudades , Contaminación del Aire/análisis , Material Particulado/análisis , Monitoreo del Ambiente/métodos , China , Estaciones del Año , Carbón Mineral/análisis
12.
Cancer Gene Ther ; 31(3): 454-463, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38135697

RESUMEN

Nasopharyngeal carcinoma (NPC) originates in the epithelial cells of the nasopharynx and is a common malignant tumor in southern China and Southeast Asia. Metastasis of NPC remains the main cause of death for NPC patients even though the tumor is sensitive to radiotherapy and chemotherapy. Here, we found that the transmembrane protein tetraspanin1 (TSPAN1) potently inhibited the in vitro migration and invasion, as well as, the in vivo metastasis of NPC cells via interacting with the IKBB protein. In addition, TSPAN1 was essential in preventing the overactivation of the NF-kB pathway in TSPAN1 overexpressing NPC cells. Furthermore, reduced TSPAN1 expression was associated with NPC metastasis and the poor prognosis of NPC patients. These results uncovered the suppressive role of TSPAN1 against NF-kB signaling in NPC cells for preventing NPC metastasis. Its therapeutic value warrants further investigation.


Asunto(s)
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/patología , FN-kappa B/genética , FN-kappa B/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Línea Celular Tumoral , Transducción de Señal , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Tetraspaninas/genética , Tetraspaninas/metabolismo
13.
Photodiagnosis Photodyn Ther ; 45: 103945, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135108

RESUMEN

OBJECTIVE: Prompt and effective wound repair is an essential strategy to promote recovery and prevent infection in patients with various types of trauma. Platelets can release a variety of growth factors upon activation to facilitate revascularization and tissue repair, provided that their activation is uncontrollable. The present study is designed to explore the selective activation of platelets by photodynamic and photothermal effects (PDE/PTE) as well as the trauma repair mediated by PDE/PTE. MATERIALS AND METHODS: In the current research, platelets were extracted from the blood of mice. Indocyanine green (ICG) was applied to induce PDE/PTE. The uptake of ICG by platelets was detected by laser confocal microscopy and flow cytometry. The cellular integrity was measured by microscopy. The reactive oxygen species (ROS) generation and temperature of platelets were assayed by 2,7-Dichlorodihydrofluorescein diacetate (DCFH-DA) and temperature detector. The activation of platelets was measured by western blots (WB), dynamic light scattering (DLS), and scanning electron microscopy (SEM). The release of growth factor was detected by enzyme-linked immuno sorbent assay (Elisa), wherein the in vitro cell proliferation was investigated by 5-Ethynyl-2'-deoxyuridine (EDU) assay. The wound infection rates model and histological examination were constructed to assay the ICG-loaded platelet-mediated wound repair. RESULTS: Platelets could load with ICG, a kind of photodynamic and photothermal agent, as carriers and remain intact. Near-infrared (NIR) laser irradiation of ICG-loaded platelets (ICG@PLT) facilitated higher temperature and ROS generation, which immediately activated ICG@PLT, as characterized by increased membrane p-selectin (CD62p), cyclooxygenase-2 (COX-2), thromboxane A2 receptor (TXA2R) expression, elevated hydrated particle size, and prominent aggregation in platelets. Further investigation revealed that massive insulin-like growth factor (IGF) and platelet-derived growth factor (PDGF) were released from the activated ICG@PLT, which also promoted the proliferation of endothelial cells and keratinocytes in co-culture. In consequence, activated platelets and increased neovascularization could be observed in rats with wound infection treated by ICG@PLT in the presence of NIR. More impressively, the hydrogel containing ICG@PLT accelerated wound healing and suppressed inflammation under NIR, exhibiting excellent wound repair properties. CONCLUSION: Taken together, the current work identified that platelets could be activated by PDE/PTE and thereby release growth factor, potentiating wound repair in a controlled manner.


Asunto(s)
Fotoquimioterapia , Infección de Heridas , Humanos , Ratones , Ratas , Animales , Verde de Indocianina/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células Endoteliales/metabolismo , Cicatrización de Heridas , Péptidos y Proteínas de Señalización Intercelular , Línea Celular Tumoral
14.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686225

RESUMEN

Cell-to-cell communication must occur through molecular transport in the intercellular fluid space. Nanoparticles, such as exosomes, diffuse or move more slowly in fluids than small molecules. To find a microfluidic technology for real-time exosome experiments on intercellular communication between living cells, we use the microfluidic culture dish's quaternary ultra-slow microcirculation flow field to accumulate nanoparticles in a specific area. Taking stem cell-tumor cell interaction as an example, the ultra-slow microcirculatory flow field controls stem cell exosomes to interfere with tumor cells remotely. Under static coculture conditions (without microfluidics), the tumor cells near stem cells (<200 µm) show quick breaking through from its Matrigel drop to meet stem cells, but this 'breaking through' quickly disappears with increasing distance. In programmed ultra-slow microcirculation, stem cells induce tumor cells 5000 µm far at the site of exosome deposition (according to nanoparticle simulations). After 14 days of programmed coculture, the glomeration and migration of tumor cells were observed in the exosome deposition area. This example shows that the ultra-slow microcirculation of the microfluidic culture dish has good prospects in quantitative experiments to study exosome communication between living cells and drug development of cancer metastasis.


Asunto(s)
Exosomas , Microfluídica , Microcirculación , Células Madre , Comunicación Celular
15.
Drug Dev Res ; 84(7): 1468-1481, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37534761

RESUMEN

Distant metastasis is the primary reason for treatment failure in patients with nasopharyngeal carcinoma (NPC). In this study, we investigated the effect of ulinastatin (UTI) on NPC metastasis and its underlying mechanism. Highly-metastatic NPC cell lines S18 and 58F were treated with UTI and the effect on cell proliferation, migration, and invasion were determined by MTS and Transwell assays. S18 cells with luciferase-expressing (S18-1C3) were injected into the left hind footpad of nude mice to establish a model of spontaneous metastasis from the footpad to popliteal lymph node (LN). The luciferase messenger RNA (mRNA) was measured by quantitative polymerase chain reaction (qPCR), and the metastasis inhibition rate was calculated. Key molecular members of the UTI-related uPA, uPAR, and JAT/STAT3 signaling pathways were detected by qPCR and immunoblotting. UTI suppressed the migration and infiltration of S18 and 5-8F cells and suppressed the metastasis of S18 cells in vivo without affecting cell proliferation. uPAR expression decreased from 24 to 48 h after UTI treatment. The antimetastatic effect of UTI is partly due to the suppression of uPA and uPAR. UTI partially suppresses NPC metastasis by downregulating the expression of uPA and uPAR.


Asunto(s)
Neoplasias Nasofaríngeas , Animales , Ratones , Humanos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Ratones Desnudos , Línea Celular Tumoral , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/patología , Luciferasas , Movimiento Celular , Invasividad Neoplásica , Metástasis de la Neoplasia
16.
Adv Healthc Mater ; 12(28): e2301561, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567571

RESUMEN

Infiltration of tumor-associated macrophages (TAM) characterized by an M2 phenotype is an overriding feature in malignant tumors. Reprogramming TAM is the most cutting-edge strategy for cancer therapy. In the present study, an iron-based metal-organic framework (MOF) nanoreactor loaded with dihydroartemisinin (DHA) is developed, which provides high uptake by TAM and retains their viability, thus effectively addressing the inefficiency of the DHA at low concentrations. Impressively, DHA@MIL-101 can selectively accumulate in tumor tissues and remodel TAM to the M1 phenotype. The results of RNA sequencing further suggest that this nanoreactor may regulate ferroptosis, a DNA damage signaling pathway in TAM. Indeed, the outcomes confirm that DHA@MIL-101 triggers ferroptosis in TAM. In addition, the findings reveal that DNA damage induced by DHA nanoreactors activates the intracellular cGAS sensor, resulting in the binding of STING to IRF3 and thereby up-regulating the immunogenicity. In contrast, blocking ferroptosis impairs DHA@MIL-101-induced activation of STING signaling and phenotypic remodeling. Finally, it is shown that DHA nanoreactors deploy anti-tumor immunotherapy through ferroptosis-mediated TAM reprogramming. Taken together, immune efficacy is achieved through TAM's remodeling by delivering DHA and iron ions into TAM using nanoreactors, providing a novel approach for combining phytopharmaceuticals with nanocarriers to regulate the immune microenvironment.


Asunto(s)
Ferroptosis , Macrófagos , Inmunoterapia , Hierro , Nanotecnología , Microambiente Tumoral
17.
Front Pharmacol ; 14: 1111218, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033622

RESUMEN

Parthenolide (PTL or PAR) was first isolated from Magnolia grandiflora and identified as a small molecule cancer inhibitor. PTL has the chemical structure of C15H20O3 with characteristics of sesquiterpene lactones and exhibits the biological property of inhibiting DNA biosynthesis of cancer cells. In this review, we summarise the recent research progress of medicinal PTL, including the therapeutic effects on skeletal diseases, cancers, and inflammation-induced cytokine storm. Mechanistic investigations reveal that PTL predominantly inhibits NF-κB activation and other signalling pathways, such as reactive oxygen species. As an inhibitor of NF-κB, PTL appears to inhibit several cytokines, including RANKL, TNF-α, IL-1ß, together with LPS induced activation of NF-κB and NF-κB -mediated specific gene expression such as IL-1ß, TNF-α, COX-2, iNOS, IL-8, MCP-1, RANTES, ICAM-1, VCAM-1. It is also proposed that PTL could inhibit cytokine storms or hypercytokinemia triggered by COVID-19 via blocking the activation of NF-κB signalling. Understanding the pharmacologic properties of PTL will assist us in developing its therapeutic application for medical conditions, including arthritis, osteolysis, periodontal disease, cancers, and COVID-19-related disease.

18.
Bioorg Chem ; 135: 106523, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37027949

RESUMEN

To further explore the binding properties of Ru(Ⅱ) polypyridine complexes with RNA, three Ru(Ⅱ) complexes [Ru(phen)2(PIP)]2+ (Ru1), [Ru(phen)2(p-HPIP)]2+ (Ru2), and [Ru(phen)2(m- HPIP)]2+ (Ru3) have been synthesized and characterized in this work. The binding properties of three Ru(Ⅱ) complexes with RNA duplex poly(A)•poly(U) have been investigated by spectral and viscosity experiments. These studies all support that these three Ru(Ⅱ) complexes bind to poly RNA duplex poly(A)•poly(U) by intercalation, and Ru1 without substituents has a stronger binding affinity for poly(A)•poly(U). Interestingly, the thermal melting experiments show that these three Ru(Ⅱ) complexes all destabilize RNA duplex poly(A)•poly(U), and the destabilizing effect can be explained by the conformational changes of duplex structure induced by intercalating agents. To the best of our knowledge, this work report for the first time a small molecule capable of destabilizing an RNA duplex, which reflects that the substitution effect of intercalated ligands has an important influence on the affinity of Ru(Ⅱ) complexes to RNA duplex, and that not all Ru(Ⅱ) complexes show thermal stability effects on an RNA duplex.


Asunto(s)
Poli A , Rutenio , Poli A/química , Rutenio/farmacología , Rutenio/química , ARN/química
19.
Photodiagnosis Photodyn Ther ; 42: 103558, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37030434

RESUMEN

OBJECTIVE: Photodynamic therapy (PDT) may be an effective therapeutic strategy for colorectal cancer at an early stage. However, malignant cells' resistance to photodynamic agents can lead to treatment failure. MYBL2 (B-Myb) is an oncogene in colorectal carcinogenesis and development, for which little research has focused on its effect on drug resistance. MATERIALS AND METHODS: In the present work, a colorectal cancer cell line with a stable knockdown of MYBL2 (ShB-Myb) was constructed first. Chlorin e6 (Ce6) was utilized to induced PDT. The anti-cancer efficacy was measured by CCK-8, PI staining, and Western blots. The drug uptake of Ce6 was assayed by flow cytometry and confocal microscopy. The ROS generation was detected by the CellROX probe. DDSB and DNA damage were assayed through comet experiment and Western blots. The over-expression of MYBL2 was conducted by MYBL2 plasmid. RESULTS: The findings indicated that the viability of ShB-Myb treated with Ce6-PDT was not decreased compared to control SW480 cells (ShNC), which were resistant to PDT. Further investigation revealed reduced photosensitizer enrichment and mitigated oxidative DNA damage in colorectal cancer cells with depressed MYBL2. It turned out that SW480 cells knocking down MYBL2 showed phosphorylation of NF-κB and led to up-regulation of ABCG2 expression thereupon. When MYBL2 was replenished back in MYBL2-deficient colorectal cancer cells, phosphorylation of NF-κB was blocked and ABCG2 expression up-regulation was suppressed. Additionally, replenishment of MYBL2 also increased the enrichment of Ce6 and the efficacy of PDT. CONCLUSION: In summary, MYBL2 absence in colorectal cancer contributes to drug resistance by activating NF-κB to up-regulate ABCG2 and thereby leading to photosensitizer Ce6 efflux. This study provides a novel theoretical basis and strategy for how to effectively improve the anti-tumor efficacy of PDT.


Asunto(s)
Clorofilidas , Neoplasias Colorrectales , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotosensibilizantes/farmacología , Fotoquimioterapia/métodos , Regulación hacia Arriba , FN-kappa B/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Porfirinas/farmacología , Línea Celular Tumoral , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Proteínas de Neoplasias , Transactivadores/metabolismo , Proteínas de Ciclo Celular/metabolismo
20.
Eur J Clin Pharmacol ; 79(5): 663-670, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36976322

RESUMEN

OBJECTIVE: Sacubitril/valsartan is a commonly used medicine for treating heart failure (HF) patients, but the treatment effects significantly vary. Neprilysin (NEP) and carboxylesterase 1 (CES1) play an important role in the efficacy of sacubitril/valsartan. The purpose of this study was to explore the relationship between NEP and CES1 gene polymorphisms and the efficacy and safety of sacubitril/valsartan treatment in HF patients. METHODS: Genotyping of 10 single nucleotide polymorphisms (SNPs) of the NEP and CES1 genes in 116 HF patients was performed by the Sequenom MassARRAY method, and logistic regression and haplotype analysis were used to evaluate the associations between SNPs and the clinical efficacy and safety of sacubitril/valsartan in HF patients. RESULTS: A total of 116 Chinese patients with HF completed the whole trial, and T variations in rs701109 in NEP gene were an independent risk factor (P = 0.013, OR = 3.292, 95% CI:1.287-8.422) for the clinical efficacy of sacubitril/valsartan. Furthermore, haplotype analysis of 6 NEP SNPs (including rs701109) was performed and showed that the CGTACC and TGTACC haplotypes were significantly associated with clinical efficacy (OR = 0.095, 95%CI: 0.012-0.723, P = 0.003; OR = 5.586, 95% CI: 1.621-19.248, P = 0.005). Moreover, no association was found between SNPs of other selected genes in terms of efficacy in HF patients, and no association was observed between SNPs and symptomatic hypotension. CONCLUSION: Our results suggest an association between rs701109 and sacubitril/valsartan response in HF patients. Symptomatic hypotension is not associated with the presence of NEP polymorphisms.


Asunto(s)
Insuficiencia Cardíaca , Hipotensión , Neprilisina , Humanos , Aminobutiratos/uso terapéutico , Antagonistas de Receptores de Angiotensina/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Combinación de Medicamentos , Pueblos del Este de Asia , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Hipotensión/inducido químicamente , Hipotensión/genética , Neprilisina/genética , Polimorfismo Genético , Volumen Sistólico , Tetrazoles/uso terapéutico , Resultado del Tratamiento , Valsartán/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA