Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 70(1): 63-77, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37734036

RESUMEN

It is well known that FGFR2 (fibroblast growth factor receptor 2) signaling is critical for proper lung development. Recent studies demonstrate that epithelial FGFR2 signaling during the saccular phase of lung development (sacculation) regulates alveolar type 1 (AT1) and AT2 cell differentiation. During sacculation, PDGFRA (platelet-derived growth factor receptor-α)-positive lung fibroblasts exist as three functional subtypes: contractile myofibroblasts, extracellular matrix-producing matrix fibroblasts, and lipofibroblasts. All three subtypes are required during alveolarization to establish a niche that supports AT2 epithelial cell self-renewal and AT1 epithelial cell differentiation. FGFR2 signaling directs myofibroblast differentiation in PDGFRA+ fibroblasts during alveolar reseptation after pneumonectomy. However, it remains unknown if FGFR2 signaling regulates PDGFRA+ myo-, matrix, or lipofibroblast differentiation during sacculation. In this study, FGFR2 signaling was inhibited by temporal expression of a secreted dominant-negative FGFR2b (dnFGFR2) by AT2 cells from embryonic day (E) 16.5 to E18.5. Fibroblast and epithelial differentiation were analyzed at E18.5 and postnatal days 7 and 21. At all time points, the number of myofibroblasts was reduced and the number of lipo-/matrix fibroblasts was increased. AT2 cells are increased and AT1 cells are reduced postnatally, but not at E18.5. Similarly, in organoids made with PDGFRA+ fibroblasts from dnFGFR2 lungs, increased AT2 cells and reduced AT1 cells were observed. In vitro treatment of primary wild-type E16.5 adherent saccular lung fibroblasts with recombinant dnFGFR2b/c resulted in reduced myofibroblast contraction. Treatment with the PI3K/AKT activator 740 Y-P rescued the lack of myofibroblast differentiation caused by dnFGFR2b/2c. Moreover, treatment with the PI3K/AKT activator 740 Y-P rescued myofibroblast differentiation in E18.5 fibroblasts isolated from dnFGFR2 lungs.


Asunto(s)
Miofibroblastos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Miofibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pulmón/metabolismo , Diferenciación Celular , Fibroblastos/metabolismo , Células Cultivadas
2.
JCI Insight ; 7(5)2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35113810

RESUMEN

Infants born prematurely worldwide have up to a 50% chance of developing bronchopulmonary dysplasia (BPD), a clinical morbidity characterized by dysregulated lung alveolarization and microvascular development. It is known that PDGFR alpha-positive (PDGFRA+) fibroblasts are critical for alveolarization and that PDGFRA+ fibroblasts are reduced in BPD. A better understanding of fibroblast heterogeneity and functional activation status during pathogenesis is required to develop mesenchymal population-targeted therapies for BPD. In this study, we utilized a neonatal hyperoxia mouse model (90% O2 postnatal days 0-7, PN0-PN7) and performed studies on sorted PDGFRA+ cells during injury and room air recovery. After hyperoxia injury, PDGFRA+ matrix and myofibroblasts decreased and PDGFRA+ lipofibroblasts increased by transcriptional signature and population size. PDGFRA+ matrix and myofibroblasts recovered during repair (PN10). After 7 days of in vivo hyperoxia, PDGFRA+ sorted fibroblasts had reduced contractility in vitro, reflecting loss of myofibroblast commitment. Organoids made with PN7 PDGFRA+ fibroblasts from hyperoxia in mice exhibited reduced alveolar type 1 cell differentiation, suggesting reduced alveolar niche-supporting PDGFRA+ matrix fibroblast function. Pathway analysis predicted reduced WNT signaling in hyperoxia fibroblasts. In alveolar organoids from hyperoxia-exposed fibroblasts, WNT activation by CHIR increased the size and number of alveolar organoids and enhanced alveolar type 2 cell differentiation.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Animales , Displasia Broncopulmonar/etiología , Fibroblastos/metabolismo , Humanos , Hiperoxia/complicaciones , Recién Nacido , Pulmón/patología , Ratones , Miofibroblastos/metabolismo
3.
Am J Pathol ; 192(3): 410-425, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34954211

RESUMEN

Histopathologic evidence of deployment-related constrictive bronchiolitis (DRCB) has been identified in soldiers deployed to Southwest Asia. While inhalational injury to the airway epithelium is suspected, relatively little is known about the pathogenesis underlying this disabling disorder. Club cells are local progenitors critical for repairing the airway epithelium after exposure to various airborne toxins, and a prior study using an inducible transgenic murine model reported that 10 days of sustained targeted club cell injury causes constrictive bronchiolitis. To further understand the mechanisms leading to small airway fibrosis, a murine model was employed to show that sustained club cell injury elicited acute weight loss, caused increased local production of proinflammatory cytokines, and promoted accumulation of numerous myeloid cell subsets in the lung. Transition to a chronic phase was characterized by up-regulated expression of oxidative stress-associated genes, increased activation of transforming growth factor-ß, accumulation of alternatively activated macrophages, and enhanced peribronchiolar collagen deposition. Comparative histopathologic analysis demonstrated that sustained club cell injury was sufficient to induce epithelial metaplasia, airway wall thickening, peribronchiolar infiltrates, and clusters of intraluminal airway macrophages that recapitulated key abnormalities observed in DRCB. Depletion of alveolar macrophages in mice decreased activation of transforming growth factor-ß and ameliorated constrictive bronchiolitis. Collectively, these findings implicate sustained club cell injury in the development of DRCB and delineate pathways that may yield biomarkers and treatment targets for this disorder.


Asunto(s)
Bronquiolitis Obliterante , Animales , Bronquiolos/patología , Bronquiolitis Obliterante/patología , Modelos Animales de Enfermedad , Pulmón/patología , Ratones , Factor de Crecimiento Transformador beta/metabolismo , Factores de Crecimiento Transformadores/metabolismo
4.
JCI Insight ; 6(14)2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34138759

RESUMEN

Mutations in the gene SFTPC, encoding surfactant protein C (SP-C), are associated with interstitial lung disease in children and adults. To assess the natural history of disease, we knocked in a familial, disease-associated SFTPC mutation, L188Q (L184Q [LQ] in mice), into the mouse Sftpc locus. Translation of the mutant proprotein, proSP-CLQ, exceeded that of proSP-CWT in neonatal alveolar type 2 epithelial cells (AT2 cells) and was associated with transient activation of oxidative stress and apoptosis, leading to impaired expansion of AT2 cells during postnatal alveolarization. Differentiation of AT2 to AT1 cells was also inhibited in ex vivo organoid culture of AT2 cells isolated from LQ mice; importantly, treatment with antioxidant promoted alveolar differentiation. Upon completion of alveolarization, SftpcLQ expression was downregulated, leading to resolution of chronic stress responses; however, the failure to restore AT2 cell numbers resulted in a permanent loss of AT2 cells that was linked to decreased regenerative capacity in the adult lung. Collectively, these data support the hypothesis that susceptibility to disease in adult LQ mice is established during postnatal lung development, and they provide a potential explanation for the delayed onset of disease in patients with familial pulmonary fibrosis.


Asunto(s)
Células Epiteliales Alveolares/patología , Predisposición Genética a la Enfermedad , Enfermedades Pulmonares Intersticiales/genética , Proteína C Asociada a Surfactante Pulmonar/genética , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Femenino , Técnicas de Sustitución del Gen , Humanos , Enfermedades Pulmonares Intersticiales/patología , Ratones , Mutación
5.
Stem Cells Transl Med ; 10(7): 1021-1032, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33624948

RESUMEN

Developing, regenerating, and repairing a lung all require interstitial resident fibroblasts (iReFs) to direct the behavior of the epithelial stem cell niche. During lung development, distal lung fibroblasts, in the form of matrix-, myo-, and lipofibroblasts, form the extra cellular matrix (ECM), create tensile strength, and support distal epithelial differentiation, respectively. During de novo septation in a murine pneumonectomy lung regeneration model, developmental processes are reactivated within the iReFs, indicating progenitor function well into adulthood. In contrast to the regenerative activation of fibroblasts upon acute injury, chronic injury results in fibrotic activation. In murine lung fibrosis models, fibroblasts can pathologically differentiate into lineages beyond their normal commitment during homeostasis. In lung injury, recently defined alveolar niche cells support the expansion of alveolar epithelial progenitors to regenerate the epithelium. In human fibrotic lung diseases like bronchopulmonary dysplasia (BPD), idiopathic pulmonary fibrosis (IPF), and chronic obstructive pulmonary disease (COPD), dynamic changes in matrix-, myo-, lipofibroblasts, and alveolar niche cells suggest differential requirements for injury pathogenesis and repair. In this review, we summarize the role of alveolar fibroblasts and their activation stage in alveolar septation and regeneration and incorporate them into the context of human lung disease, discussing fibroblast activation stages and how they contribute to BPD, IPF, and COPD.


Asunto(s)
Fibroblastos , Pulmón , Nicho de Células Madre , Animales , Displasia Broncopulmonar/patología , Fibroblastos/citología , Homeostasis , Humanos , Fibrosis Pulmonar Idiopática/patología , Pulmón/citología , Pulmón/fisiopatología , Ratones , Enfermedad Pulmonar Obstructiva Crónica/patología
6.
Matrix Biol ; 91-92: 51-74, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32442602

RESUMEN

During lung development, the mesenchyme and epithelium are dependent on each other for instructive morphogenic cues that direct proliferation, cellular differentiation and organogenesis. Specification of epithelial and mesenchymal cell lineages occurs in parallel, forming cellular subtypes that guide the formation of both transitional developmental structures and the permanent architecture of the adult lung. While epithelial cell types and lineages have been relatively well-defined in recent years, the definition of mesenchymal cell types and lineage relationships has been more challenging. Transgenic mouse lines with permanent and inducible lineage tracers have been instrumental in identifying lineage relationships among epithelial progenitor cells and their differentiation into distinct airway and alveolar epithelial cells. Lineage tracing experiments with reporter mice used to identify fibroblast progenitors and their lineage trajectories have been limited by the number of cell specific genes and the developmental timepoint when the lineage trace was activated. In this review, we discuss major developmental mesenchymal lineages, focusing on time of origin, major cell type, and other lineage derivatives, as well as the transgenic tools used to find and define them. We describe lung fibroblasts using function, location, and molecular markers in order to compare and contrast cells with similar functions. The temporal and cell-type specific expression of fourteen "fibroblast lineage" genes were identified in single-cell RNA-sequencing data from LungMAP in the LGEA database. Using these lineage signature genes as guides, we clustered murine lung fibroblast populations from embryonic day 16.5 to postnatal day 28 (E16.5-PN28) and generated heatmaps to illustrate expression of transcription factors, signaling receptors and ligands in a temporal and population specific manner.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Fibroblastos/citología , Pulmón/citología , Células Madre Mesenquimatosas/citología , Mesodermo/citología , Animales , Diferenciación Celular , Linaje de la Célula/genética , Rastreo Celular/métodos , Citocinas/genética , Citocinas/metabolismo , Embrión de Mamíferos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Células Madre Mesenquimatosas/metabolismo , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Organogénesis/genética , Regeneración/genética , Transducción de Señal
7.
JCI Insight ; 52019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30990794

RESUMEN

Obliterative bronchiolitis (OB) is a poorly understood airway disease characterized by the generation of fibrotic bronchiolar occlusions. In the lung transplant setting, OB is a pathological manifestation of bronchiolitis obliterans syndrome (BOS), which is a major impediment to long-term recipient survival. Club cells play a key role in bronchiolar epithelial repair, but whether they promote lung transplant tolerance through preventing OB remains unclear. We determined if OB occurs in mouse orthotopic lung transplants following conditional transgene-targeted club cell depletion. In syngeneic lung transplants club cell depletion leads to transient epithelial injury followed by rapid club cell-mediated repair. In contrast, allogeneic lung transplants develop severe OB lesions and poorly regenerate club cells despite immunosuppression treatment. Lung allograft club cell ablation also triggers the recognition of alloantigens, and pulmonary restricted self-antigens reported associated with BOS development. However, CD8+ T cell depletion restores club cell reparative responses and prevents OB. In addition, ex-vivo analysis reveals a specific role for alloantigen-primed effector CD8+ T cells in preventing club cell proliferation and maintenance. Taken together, we demonstrate a vital role for club cells in maintaining lung transplant tolerance and propose a new model to identify the underlying mechanisms of OB.


Asunto(s)
Bronquiolos/citología , Bronquiolitis Obliterante/inmunología , Células Epiteliales/inmunología , Rechazo de Injerto/inmunología , Trasplante de Pulmón/efectos adversos , Animales , Bronquiolos/inmunología , Bronquiolitis Obliterante/patología , Linfocitos T CD8-positivos/inmunología , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Rechazo de Injerto/patología , Humanos , Ratones , Cultivo Primario de Células , Mucosa Respiratoria/citología , Mucosa Respiratoria/inmunología , Trasplante Homólogo/efectos adversos
8.
JCI Insight ; 3(17)2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30185671

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease causing fibrotic remodeling of the peripheral lung, leading to respiratory failure. Peripheral pulmonary epithelial cells lose normal alveolar epithelial gene expression patterns and variably express genes associated with diverse conducting airway epithelial cells, including basal cells. Single-cell RNA sequencing of pulmonary epithelial cells isolated from IPF lung tissue demonstrated altered expression of LncRNAs, including increased MEG3. MEG3 RNA was highly expressed in subsets of the atypical IPF epithelial cells and correlated with conducting airway epithelial gene expression patterns. Expression of MEG3 in human pulmonary epithelial cell lines increased basal cell-associated RNAs, including TP63, KRT14, STAT3, and YAP1, and enhanced cell migration, consistent with a role for MEG3 in regulating basal cell identity. MEG3 reduced expression of TP73, SOX2, and Notch-associated RNAs HES1 and HEY1, in primary human bronchial epithelial cells, demonstrating a role for MEG3 in the inhibition of genes influencing basal cell differentiation into club, ciliated, or goblet cells. MEG3 induced basal cell genes and suppressed genes associated with terminal differentiation of airway cells, supporting a role for MEG3 in regulation of basal progenitor cell functions, which may contribute to tissue remodeling in IPF.


Asunto(s)
Diferenciación Celular/fisiología , Células Epiteliales/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Sitios de Unión , Biomarcadores , Diferenciación Celular/genética , Línea Celular , Movimiento Celular , Regulación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/genética , Queratina-14/genética , Pulmón/metabolismo , Regiones Promotoras Genéticas , Factor de Transcripción STAT3/genética , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
9.
JCI Insight ; 3(6)2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29563341

RESUMEN

Hippo/YAP signaling plays pleiotropic roles in the regulation of cell proliferation and differentiation during organogenesis and tissue repair. Herein we demonstrate increased YAP activity in respiratory epithelial cells in lungs of patients with idiopathic pulmonary fibrosis (IPF), a common, lethal form of interstitial lung disease (ILD). Immunofluorescence staining in IPF epithelial cells demonstrated increased nuclear YAP and loss of MST1/2. Bioinformatic analyses of epithelial cell RNA profiles predicted increased activity of YAP and increased canonical mTOR/PI3K/AKT signaling in IPF. Phospho-S6 (p-S6) and p-PTEN were increased in IPF epithelial cells, consistent with activation of mTOR signaling. Expression of YAP (S127A), a constitutively active form of YAP, in human bronchial epithelial cells (HBEC3s) increased p-S6 and p-PI3K, cell proliferation and migration, processes that were inhibited by the YAP-TEAD inhibitor verteporfin. Activation of p-S6 was required for enhancing and stabilizing YAP, and the p-S6 inhibitor temsirolimus blocked nuclear YAP localization and suppressed expression of YAP target genes CTGF, AXL, and AJUBA (JUB). YAP and mTOR/p-S6 signaling pathways interact to induce cell proliferation and migration, and inhibit epithelial cell differentiation that may contribute to the pathogenesis of IPF.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Epiteliales/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Enfermedades Pulmonares Intersticiales/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Portadoras/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Células Epiteliales/patología , Factor de Crecimiento de Hepatocito/metabolismo , Vía de Señalización Hippo , Humanos , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Pulmón/patología , Enfermedades Pulmonares Intersticiales/patología , Proteínas de la Membrana/metabolismo , Proteína Oncogénica v-akt/metabolismo , Organogénesis , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/antagonistas & inhibidores , Fosforilación , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Quinasas S6 Ribosómicas , Serina-Treonina Quinasa 3 , Transducción de Señal/efectos de los fármacos , Sirolimus/análogos & derivados , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción , Proteínas Supresoras de Tumor/metabolismo , Verteporfina/farmacología , Proteínas Señalizadoras YAP
10.
Pediatr Pulmonol ; 52(5): 616-624, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28186703

RESUMEN

BACKGROUND: Bronchopulmonary dysplasia (BPD) results from alveolar simplification and abnormal development of alveolar and capillary structure. Survivors of BPD display persistent deficits in airflow and membrane and vascular components of alveolar gas diffusion. Despite being the defining feature of BPD, various neonatal hyperoxia models of BPD have not routinely assessed pulmonary gas diffusion. METHODS: To simulate the most commonly-utilized neonatal hyperoxia models, we exposed neonatal mice to room air or ≥90% hyperoxia during key stages of distal lung development: through the first 4 (saccular), 7 (early alveolar), or 14 (bulk alveolar) postnatal days, followed by a period of recovery in room air until 8 weeks of age when alveolar septation is essentially complete. We systematically assessed and correlated the effects of neonatal hyperoxia on the degree of alveolar-capillary structural and functional impairment. We hypothesized that the degree of alveolar-capillary simplification would correlate strongly with worsening diffusion impairment. RESULTS: Neonatal hyperoxia exposure, of any duration, resulted in alveolar simplification and impaired pulmonary gas diffusion. Mean Linear Intercept increased in proportion to the length of hyperoxia exposure while alveolar and total lung volume increased markedly only with prolonged exposure. Surprisingly, despite having a similar effect on alveolar surface area, only prolonged hyperoxia for 14 days resulted in reduced pulmonary microvascular volume. Estimates of alveolar and capillary structure, in general, correlated poorly with assessment of gas diffusion. CONCLUSION: Our results help define the physiological and structural consequences of commonly-employed neonatal hyperoxia models of BPD and inform their clinical utility. Pediatr Pulmonol. 2017;52:616-624. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Displasia Broncopulmonar/fisiopatología , Hiperoxia/fisiopatología , Pulmón/fisiopatología , Alveolos Pulmonares/fisiopatología , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/patología , Capilares/patología , Capilares/fisiopatología , Femenino , Humanos , Hiperoxia/patología , Recién Nacido , Pulmón/patología , Ratones , Alveolos Pulmonares/patología
11.
JCI Insight ; 1(20): e90558, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27942595

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial lung disease characterized by airway remodeling, inflammation, alveolar destruction, and fibrosis. We utilized single-cell RNA sequencing (scRNA-seq) to identify epithelial cell types and associated biological processes involved in the pathogenesis of IPF. Transcriptomic analysis of normal human lung epithelial cells defined gene expression patterns associated with highly differentiated alveolar type 2 (AT2) cells, indicated by enrichment of RNAs critical for surfactant homeostasis. In contrast, scRNA-seq of IPF cells identified 3 distinct subsets of epithelial cell types with characteristics of conducting airway basal and goblet cells and an additional atypical transitional cell that contributes to pathological processes in IPF. Individual IPF cells frequently coexpressed alveolar type 1 (AT1), AT2, and conducting airway selective markers, demonstrating "indeterminate" states of differentiation not seen in normal lung development. Pathway analysis predicted aberrant activation of canonical signaling via TGF-ß, HIPPO/YAP, P53, WNT, and AKT/PI3K. Immunofluorescence confocal microscopy identified the disruption of alveolar structure and loss of the normal proximal-peripheral differentiation of pulmonary epithelial cells. scRNA-seq analyses identified loss of normal epithelial cell identities and unique contributions of epithelial cells to the pathogenesis of IPF. The present study provides a rich data source to further explore lung health and disease.


Asunto(s)
Células Epiteliales/citología , Fibrosis Pulmonar Idiopática/patología , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica , Marcadores Genéticos , Humanos , Pulmón/citología , Análisis de la Célula Individual , Transcriptoma
12.
Dev Dyn ; 245(5): 590-604, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26869074

RESUMEN

BACKGROUND: Lung morphogenesis is regulated by interactions between the canonical Wnt/ß-catenin and Kras/ERK/Foxm1 signaling pathways that establish proximal-peripheral patterning of lung tubules. How these interactions influence the development of respiratory epithelial progenitors to acquire airway as compared to alveolar epithelial cell fate is unknown. During branching morphogenesis, SOX9 transcription factor is normally restricted from conducting airway epithelial cells and is highly expressed in peripheral, acinar progenitor cells that serve as precursors of alveolar type 2 (AT2) and AT1 cells as the lung matures. RESULTS: To identify signaling pathways that determine proximal-peripheral cell fate decisions, we used the SFTPC gene promoter to delete or overexpress key members of Wnt/ß-catenin and Kras/ERK/Foxm1 pathways in fetal respiratory epithelial progenitor cells. Activation of ß-catenin enhanced SOX9 expression in peripheral epithelial progenitors, whereas deletion of ß-catenin inhibited SOX9. Surprisingly, deletion of ß-catenin caused accumulation of atypical SOX9-positive basal cells in conducting airways. Inhibition of Wnt/ß-catenin signaling by Kras(G12D) or its downstream target Foxm1 stimulated SOX9 expression in basal cells. Genetic inactivation of Foxm1 from Kras(G12D) -expressing epithelial cells prevented the accumulation of SOX9-positive basal cells in developing airways. CONCLUSIONS: Interactions between the Wnt/ß-catenin and the Kras/ERK/Foxm1 pathways are essential to restrict SOX9 expression in basal cells. Developmental Dynamics 245:590-604, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteína Forkhead Box M1/metabolismo , Pulmón/embriología , Morfogénesis , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/fisiología , beta Catenina/metabolismo , Animales , Tipificación del Cuerpo , Embrión de Mamíferos , Células Epiteliales , Ratones , Factor de Transcripción SOX9/análisis , Células Madre
13.
Am J Respir Cell Mol Biol ; 47(4): 517-27, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22652199

RESUMEN

Although the importance of platelet-derived growth factor receptor (PDGFR)-α signaling during normal alveogenesis is known, it is unclear whether this signaling pathway can regulate realveolarization in the adult lung. During alveolar development, PDGFR-α-expressing cells induce α smooth muscle actin (α-SMA) and differentiate to interstitial myofibroblasts. Fibroblast growth factor (FGF) signaling regulates myofibroblast differentiation during alveolarization, whereas peroxisome proliferator-activated receptor (PPAR)-γ activation antagonizes myofibroblast differentiation in lung fibrosis. Using left lung pneumonectomy, the roles of FGF and PPAR-γ signaling in differentiation of myofibroblasts from PDGFR-α-positive precursors during compensatory lung growth were assessed. FGF receptor (FGFR) signaling was inhibited by conditionally activating a soluble dominant-negative FGFR2 transgene. PPAR-γ signaling was activated by administration of rosiglitazone. Changes in α-SMA and PDGFR-α protein expression were assessed in PDGFR-α-green fluorescent protein (GFP) reporter mice using immunohistochemistry, flow cytometry, and real-time PCR. Immunohistochemistry and flow cytometry demonstrated that the cell ratio and expression levels of PDGFR-α-GFP changed dynamically during alveolar regeneration and that α-SMA expression was induced in a subset of PDGFR-α-GFP cells. Expression of a dominant-negative FGFR2 and administration of rosiglitazone inhibited induction of α-SMA in PDGFR-α-positive fibroblasts and formation of new septae. Changes in gene expression of epithelial and mesenchymal signaling molecules were assessed after left lobe pneumonectomy, and results demonstrated that inhibition of FGFR2 signaling and increase in PPAR-γ signaling altered the expression of Shh, FGF, Wnt, and Bmp4, genes that are also important for epithelial-mesenchymal crosstalk during early lung development. Our data demonstrate for the first time that a comparable epithelial-mesenchymal crosstalk regulates fibroblast phenotypes during alveolar septation.


Asunto(s)
Regulación de la Expresión Génica , Miofibroblastos/metabolismo , Alveolos Pulmonares/patología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Regeneración , Actinas/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Fibroblastos/fisiología , Genes Dominantes , Pulmón/metabolismo , Pulmón/patología , Pulmón/fisiopatología , Ratones , Ratones Transgénicos , Miofibroblastos/fisiología , PPAR gamma/agonistas , Fenotipo , Neumonectomía , Alveolos Pulmonares/fisiopatología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Rosiglitazona , Transducción de Señal , Tiazolidinedionas/farmacología , Transcripción Genética
14.
Am J Respir Crit Care Med ; 183(4): 511-21, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20870756

RESUMEN

RATIONALE: The respiratory epithelium has a remarkable capacity to respond to acute injury. In contrast, repeated epithelial injury is often associated with abnormal repair, inflammation, and fibrosis. There is increasing evidence that nonciliated epithelial cells play important roles in the repair of the bronchiolar epithelium after acute injury. Cellular processes underlying the repair and remodeling of the lung after chronic epithelial injury are poorly understood. OBJECTIVES: To identify cell processes mediating epithelial regeneration and remodeling after acute and chronic Clara cell depletion. METHODS: A transgenic mouse model was generated to conditionally express diphtheria toxin A to ablate Clara cells in the adult lung. Epithelial regeneration and peribronchiolar fibrosis were assessed after acute and chronic Clara cell depletion. MEASUREMENTS AND MAIN RESULTS: Acute Clara cell ablation caused squamous metaplasia of ciliated cells and induced proliferation of residual progenitor cells. Ciliated cells in the bronchioles and pro-surfactant protein C-expressing cells in the bronchiolar alveolar duct junctions did not proliferate. Epithelial cell proliferation occurred at multiple sites along the airways and was not selectively associated with regions around neuroepithelial bodies. Chronic Clara cell depletion resulted in ineffective repair and caused peribronchiolar fibrosis. CONCLUSIONS: Colocalization of proliferation and cell type-specific markers demonstrate that Clara cells are critical airway progenitor cells. Continuous depletion of Clara cells resulted in persistent squamous metaplasia, lack of normal reepithelialization, and peribronchiolar fibrosis. Induction of proliferation in subepithelial fibroblasts supports the concept that chronic epithelial depletion caused peribronchiolar fibrosis.


Asunto(s)
Bronquios/metabolismo , Bronquios/patología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Células Madre/metabolismo , Células Madre/patología , Animales , Bronquios/citología , Células Cultivadas , Toxina Diftérica , Modelos Animales de Enfermedad , Fibrosis , Pulmón/citología , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Transgénicos , Mucosa Respiratoria/citología , Células Madre/citología
15.
Cell Cycle ; 9(14): 2769-76, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20676040

RESUMEN

Pulmonary fibrosis complicates a number of disease processes and leads to substantial morbidity and mortality. Idiopathic pulmonary fibrosis (IPF) is perhaps the most pernicious and enigmatic form of the greater problem of lung fibrogenesis with a median survival of three years from diagnosis in affected patients. In this review, we will focus on the pathology of IPF as a model of pulmonary fibrotic processes, review possible cellular mechanisms, review current treatment approaches and review two transgenic mouse models of lung fibrosis to provide insight into processes that cause lung fibrosis. We will also summarize the potential utility of signaling pathway inhibitors as a future treatment in pulmonary fibrosis. Finally, we will present data demonstrating a minimal contribution of epithelial-mesenchymal transition in the development of fibrotic lesions in the transforming growth factor-alpha transgenic model of lung fibrosis.


Asunto(s)
Células Epiteliales/metabolismo , Fibrosis Pulmonar/etiología , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Células Epiteliales/citología , Receptores ErbB/metabolismo , Humanos , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/terapia , Proteína C Asociada a Surfactante Pulmonar/genética , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
16.
Am J Physiol Lung Cell Mol Physiol ; 297(2): L299-308, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19502291

RESUMEN

Normal alveolarization has been studied in rodents using detailed morphometric techniques and loss of function approaches for growth factors and their receptors. However, it remains unclear how these growth factors direct the formation of secondary septae. We have previously developed a transgenic mouse model in which expression of a soluble dominant-negative FGF receptor (dnFGFR) in the prenatal period results in reduced alveolar septae formation and subsequent alveolar simplification. Retinoic acid (RA), a biologically active derivative of vitamin A, can induce regeneration of alveoli in adult rodents. In this study, we demonstrate that RA induces alveolar reseptation in this transgenic mouse model and that realveolarization in adult mice is FGF dependent. Proliferation in the lung parenchyma, an essential prerequisite for lung regrowth was enhanced after 14 days of RA treatment and was not influenced by dnFGFR expression. During normal lung development, formation of secondary septae is associated with the transient presence of alpha-smooth muscle actin (alphaSMA)-positive interstitial myofibroblasts. One week after completion of RA treatment, alphaSMA expression was detected in interstitial fibroblasts, supporting the concept that RA-initiated realveolarization recapitulates aspects of septation that occur during normal lung development. Expression of dnFGFR blocked realveolarization with increased PDGF receptor-alpha (PDGFRalpha)-positive cells and decreased alphaSMA-positive cells. Taken together, our data demonstrate that FGF signaling is required for the induction of alphaSMA in the PDGFRalpha-positive myofibroblast progenitor and the progression of alveolar regeneration.


Asunto(s)
Fibroblastos/fisiología , Alveolos Pulmonares/citología , Alveolos Pulmonares/fisiología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Regeneración/fisiología , Transducción de Señal/fisiología , Actinas/metabolismo , Factores de Edad , Animales , Antineoplásicos/farmacología , División Celular/efectos de los fármacos , División Celular/fisiología , Elastina/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Fibroblastos/citología , Proteínas Fluorescentes Verdes/genética , Humanos , Ratones , Ratones Transgénicos , Alveolos Pulmonares/crecimiento & desarrollo , Proteína C Asociada a Surfactante Pulmonar/genética , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal/efectos de los fármacos , Tretinoina/farmacología
17.
Mol Cancer Res ; 6(3): 468-82, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18337453

RESUMEN

Sprouty (Spry) proteins modulate signal transduction pathways elicited by receptor tyrosine kinases (RTK). Depending on cell type and the particular RTK, Spry proteins exert dual functions: They can either repress RTK-mediated signaling pathways, mainly by interfering with the Ras/Raf/mitogen-activated protein kinase pathway or sustaining RTK signal transduction, for example by sequestering the E3 ubiquitin-ligase c-Cbl and thus preventing ubiquitylation, internalization, and degradation of RTKs. Here, by the inducible expression of murine Spry4 in pancreatic beta cells, we have assessed the functional role of Spry proteins in the development of pancreatic islets of Langerhans in normal mice and in the Rip1Tag2 transgenic mouse model of beta-cell carcinogenesis. beta cell-specific expression of mSpry4 provokes a significant reduction in islet size, an increased number of alpha cells per islet area, and impaired islet cell type segregation. Functional analysis of islet cell differentiation in cultured PANC-1 cells shows that mSpry4 represses adhesion and migration of differentiating pancreatic endocrine cells, most likely by affecting the subcellular localization of the protein tyrosine phosphatase PTP1B. In contrast, transgenic expression of mSpry4 during beta-cell carcinogenesis does not significantly affect tumor outgrowth and progression to tumor malignancy. Rather, tumor cells seem to escape mSpry4 transgene expression.


Asunto(s)
Células Secretoras de Insulina/fisiología , Islotes Pancreáticos/fisiología , Proteínas del Tejido Nervioso/fisiología , Neoplasias Pancreáticas/patología , Animales , Línea Celular Tumoral , Cartilla de ADN , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas de Complejo Poro Nuclear/genética , Neoplasias Pancreáticas/genética , Reacción en Cadena de la Polimerasa , Proteínas de Unión al ARN/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal
18.
J Biol Chem ; 281(24): 16716-26, 2006 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-16613858

RESUMEN

Expression of surfactant protein C (SP-C), which is restricted to alveolar type II epithelial cells of the adult lung, is critically dependent on thyroid transcription factor 1 (TTF-1). In the present study we have demonstrated that Erm, a member of the Ets family of transcription factors, is expressed in the distal lung epithelium during development and is also restricted to alveolar type II cells in the adult. Erm was up-regulated by fibroblast growth factors (FGFs) in culture, and blocking FGF signaling inhibited Erm expression both in vivo and in vitro. The SP-C minimal promoter was found to contain two potential Ets binding sites, and electrophoretic mobility shift assays showed that two 20-bp wild-type oligonucleotides containing the 5'-GGA(A/T)-3' Ets consensus binding motif were shifted by nuclear extracts from MLE15 cells. Co-transfection assays showed that Erm by itself had little effect on SP-C promoter activity but that Erm significantly enhanced TTF-1-mediated SP-C transcription. Mutation of one of the Ets binding sites reduced SP-C transcription to background levels, whereas mutation of the other site resulted in increased SP-C transcription. Protein-protein interactions between Erm and TTF-1 were demonstrated by mammalian two-hybrid assays and by co-immunoprecipitation assays. Mapping studies showed that the Ets domain of Erm and the combined N terminus and homeodomain of TTF-1 were critical for this interaction. Treatment of primary cultures of adult alveolar type II cells with siRNA targeting Erm diminished expression of both Erm and SP-C but had no effect on beta-actin or GAPDH (glyceraldehyde-3-phosphate dehydrogenase). Taken together, these results demonstrate that Erm is involved in SP-C regulation, which results from an interaction with TTF-1.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas Nucleares/fisiología , Péptidos/metabolismo , Factores de Transcripción/fisiología , Transcripción Genética , Animales , Proteínas de Unión al ADN/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular , Pulmón/metabolismo , Ratones , Ratones Transgénicos , Proteínas Nucleares/metabolismo , Péptidos/química , Regiones Promotoras Genéticas , Mapeo de Interacción de Proteínas , Proteína C Asociada a Surfactante Pulmonar , Transducción de Señal , Factor Nuclear Tiroideo 1 , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
19.
Development ; 133(6): 1155-64, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16467360

RESUMEN

Epithelial cells lining the peripheral lung synthesize pulmonary surfactant that reduces surface tension at the air-liquid interface. Lack of surfactant lipids and proteins in the lungs causes respiratory distress syndrome, a common cause of morbidity and mortality in preterm infants. We show that C/EBPalpha plays a crucial role in the maturation of the respiratory epithelium in late gestation, being required for the production of surfactant lipids and proteins necessary for lung function. Deletion of the Cebpa gene in respiratory epithelial cells in fetal mice caused respiratory failure at birth. Structural and biochemical maturation of the lung was delayed. Normal synthesis of surfactant lipids and proteins, including SP-A, SP-B, SP-C, SP-D, ABCA3 (a lamellar body associated protein) and FAS (precursor of fatty acid synthesis) were dependent upon expression of the C/EBPalpha in respiratory epithelial cells. Deletion of the Cebpa gene caused increased expression of Tgfb2, a growth factor that inhibits lung epithelial cell proliferation and differentiation. Normal expression of C/EBPalpha required Titf1 and Foxa2, transcription factors that also play an important role in perinatal lung differentiation. C/EBPalpha participates in a transcriptional network that is required for the regulation of genes mediating perinatal lung maturation and surfactant homeostasis that is necessary for adaptation to air breathing at birth.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Pulmón/embriología , Pulmón/metabolismo , Animales , Animales Recién Nacidos , Proteína alfa Potenciadora de Unión a CCAAT/genética , Diferenciación Celular , Femenino , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Lípidos/biosíntesis , Pulmón/irrigación sanguínea , Pulmón/citología , Ratones , Ratones Transgénicos , Músculo Liso/irrigación sanguínea , Músculo Liso/enzimología , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo , Biosíntesis de Proteínas , Factores de Tiempo , Transcripción Genética/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta2
20.
Am J Respir Cell Mol Biol ; 33(5): 455-62, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16055670

RESUMEN

To identify relationships amongst tracheal and alveolar epithelial cells during lung development, we used conditional systems controlled by the rat CCSP and human SFTPC gene promoters to express Cre-recombinase in the developing mouse lung, thereby permanently labeling cells by expression of alkaline phosphatase or green fluorescent protein. When controlled by the rat CCSP promoter, continuous exposure of the fetus to doxycycline caused widespread recombination in conducting airway epithelial cells, including cells of the trachea, bronchi, and bronchioles before birth, and in both conducting and peripheral airways after birth. Neuroepithelial cells, identified by CGRP staining, were never labeled. Recombination and permanent labeling were observed in both ciliated and nonciliated respiratory epithelial cells, demonstrating their derivation from common progenitor cells during lung morphogenesis. Remarkable dorsal-ventral and cephalo-caudal labeling patterns, established before birth, were identified by recombination controlled by the rat CCSP gene promoter. In the trachea, subsets of epithelial cells labeled by the CCSP promoter were organized horizontally along the dorsal-ventral axis of the trachea, where selective labeling of cells juxtaposed to tracheal and bronchial cartilage was observed. In sharp contrast, recombination controlled by the human SFTPC gene promoter identified related cells that were organized in linear patterns along the cephalo-caudal axis of the conducting airways. Conditional expression of Cre-recombinase in the respiratory epithelium provides a useful model for the study of gene expression and function in the mouse respiratory tract and in the lung.


Asunto(s)
Bronquios/citología , Pulmón/embriología , Pulmón/crecimiento & desarrollo , Alveolos Pulmonares/citología , Tráquea/citología , Animales , Bronquios/embriología , Bronquios/crecimiento & desarrollo , Diferenciación Celular , Células Epiteliales/clasificación , Células Epiteliales/citología , Femenino , Humanos , Pulmón/citología , Ratones , Ratones Transgénicos , Morfogénesis/genética , Péptidos/genética , Regiones Promotoras Genéticas , Alveolos Pulmonares/embriología , Alveolos Pulmonares/crecimiento & desarrollo , Proteína C Asociada a Surfactante Pulmonar , Ratas , Recombinación Genética , Uteroglobina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA