Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-29900007

RESUMEN

BACKGROUND: Anthracycline induced cardiomyopathy is a major cause of mortality and morbidity among pediatric cancer survivors. It has been postulated that oxidative stress induction and inflammation may play a role in the pathogenesis of this process. Accordingly, the present study performed an assessment of biomarker profiles and functional imaging parameters focused upon potential early determinants of anthracycline induced cardiomyopathy. METHODS: Patients (10-22 years) were prospectively enrolled between January 2013 and November 2014. Thirteen subjects completed the study and underwent serial cardiac magnetic resonance imaging and plasma biomarker profiling performed 24-48 h after the first anthracycline dose and at set dose intervals. In addition, we collected plasma samples from 62 healthy controls to examine normal plasma biomarker profiles. RESULTS: Left ventricular ejection fraction (LVEF) decreased from 64.3 ± 6.2 at the first visit to 57.5 ± 3.3 (p = 0.004) 1 year after chemotherapy. A decline in longitudinal strain magnitude occurred at lower cumulative doses. A differential inflammatory/matrix signature emerged in anthracycline induced cardiomyopathy patients compared to normal including increased interleukin-8 and MMP levels. With longer periods of anthracycline dosing, MMP-7, a marker of macrophage proteolytic activation, increased by 165 ± 54% whereas interleukin-10 an anti-inflammatory marker decreased by 75 ± 13% (both p < 0.05). MMP7 correlated with time dependent changes in EF. CONCLUSIONS: Asymptomatic pediatric patients exposed to anthracycline therapy develop abnormal strain parameters at lower cumulative doses when compared to changes in EF. A differential biomarker signature containing both inflammatory and matrix domains occur early in anthracycline treatment. Dynamic changes in these domains occur with increased anthracycline doses and progression to anthracycline induced cardiomyopathy. These findings provide potential prognostic and mechanistic insights into the natural history of anthracycline induced cardiomyopathy. TRIAL REGISTRATION NUMBER: NCT03211520 Date of Registration February 13, 2017, retrospectively registered.

2.
J Thorac Cardiovasc Surg ; 156(2): 568-575, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29609885

RESUMEN

BACKGROUND: Although strategies have focused on myocardial salvage/regeneration in the context of an acute coronary syndrome and a myocardial infarction (MI), interventions targeting the formed MI region and altering the course of the post-MI remodeling process have not been as well studied. This study tested the hypothesis that localized high-frequency stimulation instituted within a formed MI region using low-amplitude electrical pulses would favorably change the trajectory of changes in left ventricle geometry and function. METHODS: At 7 days following MI induction, pigs were randomized for localized high-frequency stimulation (n = 5, 240 bpm, 0.8 V, and 0.05 ms pulses) or unstimulated (n = 6). Left ventricle geometry and function were measured at baseline (pre-MI) and at 7, 14, 21, and 28 days post-MI using echocardiography. MI size at 28 days post-MI was determined by histochemical staining and planimetry. RESULTS: At 7 days post-MI and before randomization to localized high-frequency stimulation, left ventricular ejection fraction and end-diastolic volume was equivalent. However, when compared with 7-day post-MI values, left ventricle end-diastolic volume increased in a time-dependent manner in the MI unstimulated group, but the relative increase in left ventricle end-diastolic volume was reduced in the MI localized high-frequency stimulation group. For example, by 28 days post-MI, left ventricle end-diastolic volume increased by 32% in the MI unstimulated group but only by 12% in the MI localized high-frequency stimulation group (P < .05). Whereas left ventricular ejection fraction appeared unchanged between MI groups, estimates of pulmonary capillary wedge pressure, a marker of adverse left ventricle performance and progression to failure, increased by 62% in the MI unstimulated group and actually decreased by 17% in the MI localized high-frequency stimulation group when compared with 7-day post-MI values (P < .05). MI size was equivalent between the MI groups, indicative of no difference in the extent of absolute myocardial injury. CONCLUSIONS: The unique findings from this study are 2-fold. First, targeting the MI region following the resolution of the acute event using a localized stimulation approach is feasible. Second, localized stimulation modified a key parameter of adverse post-MI remodeling (dilation) and progression to heart failure. These findings demonstrate that the MI region itself is a modifiable tissue and responsive to localized electrical stimulation.


Asunto(s)
Estimulación Eléctrica/métodos , Ventrículos Cardíacos/efectos de la radiación , Infarto del Miocardio , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda/efectos de la radiación , Animales , Ecocardiografía , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA