Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Negl Trop Dis ; 18(4): e0012085, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38578804

RESUMEN

BACKGROUND: In the Mediterranean basin, three Leishmania species have been identified: L. infantum, L. major and L. tropica, causing zoonotic visceral leishmaniasis (VL), zoonotic cutaneous leishmaniasis (CL) and anthroponotic CL, respectively. Despite animal models and genomic/transcriptomic studies provided important insights, the pathogenic determinants modulating the development of VL and CL are still poorly understood. This work aimed to identify host transcriptional signatures shared by cells infected with L. infantum, L. major, and L. tropica, as well as specific transcriptional signatures elicited by parasites causing VL (i.e., L. infantum) and parasites involved in CL (i.e., L. major, L. tropica). METHODOLOGY/PRINCIPAL FINDINGS: U937 cells differentiated into macrophage-like cells were infected with L. infantum, L. major and L. tropica for 24h and 48h, and total RNA was extracted. RNA sequencing, performed on an Illumina NovaSeq 6000 platform, was used to evaluate the transcriptional signatures of infected cells with respect to non-infected cells at both time points. The EdgeR package was used to identify differentially expressed genes (fold change > 2 and FDR-adjusted p-values < 0.05). Then, functional enrichment analysis was employed to identify the enriched ontology terms in which these genes are involved. At 24h post-infection, a common signature of 463 dysregulated genes shared among all infection conditions was recognized, while at 48h post-infection the common signature was reduced to 120 genes. Aside from a common transcriptional response, we evidenced different upregulated functional pathways characterizing L. infantum-infected cells, such as VEGFA-VEGFR2 and NFE2L2-related pathways, indicating vascular remodeling and reduction of oxidative stress as potentially important factors for visceralization. CONCLUSIONS: The identification of pathways elicited by parasites causing VL or CL could lead to new therapeutic strategies for leishmaniasis, combining the canonical anti-leishmania compounds with host-directed therapy.


Asunto(s)
Leishmania infantum , Leishmania major , Leishmania tropica , Leishmaniasis Cutánea , Leishmaniasis Visceral , Animales , Humanos , Leishmania tropica/genética , Leishmania infantum/genética , Leishmaniasis Cutánea/parasitología , Leishmaniasis Visceral/parasitología , Macrófagos
2.
Sci Rep ; 13(1): 22000, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38081972

RESUMEN

The histone deacetylase sirtuin 6 (SIRT6) has been endowed with anti-cancer capabilities in many tumor types. Here, we investigate the impact of SIRT6-overexpression (SIRT6-OE) in Delta16HER2 mice, which are a bona fide model of HER2-positive breast cancer. After an initial delay in the tumor onset, SIRT6-OE induces a more aggressive phenotype of Delta16HER2 tumors promoting the formation of higher number of tumor foci and metastases than controls. This phenotype of SIRT6-OE tumors is associated with cancer stem cell (CSC)-like features and tumor dormancy, and low senescence and oxidative DNA damage. Accordingly, a sub-set of HER2-positive breast cancer patients with concurrent SIRT6-OE has a significant poorer relapse-free survival (RFS) probability than patients with low expression of SIRT6. ChIP-seq, RNA-seq and RT-PCR experiments indicate that SIRT6-OE represses the expression of the T-box transcription factor 3 (Tbx3) by deacetylation of H3K9ac. Accordingly, loss-of-function mutations of TBX3 or low TBX3 expression levels are predictive of poor prognosis in HER2-positive breast cancer patients. Our work indicates that high levels of SIRT6 are indicative of poor prognosis and high risk of metastasis in HER2-positive breast cancer and suggests further investigation of TBX3 as a downstream target of SIRT6 and co-marker of poor-prognosis. Our results point to a breast cancer subtype-specific effect of SIRT6 and warrant future studies dissecting the mechanisms of SIRT6 regulation in different breast cancer subtypes.


Asunto(s)
Neoplasias de la Mama , Sirtuinas , Humanos , Animales , Ratones , Femenino , Neoplasias de la Mama/patología , Recurrencia Local de Neoplasia , Sirtuinas/metabolismo , Enfermedad Crónica
3.
Cancer Rep (Hoboken) ; 6(1): e1625, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35546267

RESUMEN

BACKGROUND: Early-life stress due to poor parental care has been suggested to increase cancer risk, though, so far, no experimental evidence established a link between defective parental behavior and spontaneous tumorigenesis in progeny. Essential maternal behavior is regulated, in particular, by the oxytocin (OT) hormonal circuit, which in turn responds to stimuli from the offspring and impinges on the central nervous systems. METHODS: By providing L-368,899 OT receptor (OTR) inhibitor to lactating mothers, we set up a model of defective maternal care in p53 knockout mice. RESULTS: The progeny of these dams showed, later in life, higher cortisol levels, shortened life span and increased tumorigenic potential of bone marrow cells (BMC). Notably, these phenotypes were transmitted to the following generation. CONCLUSIONS: Therefore, the inhibition of OT function in mothers is a novel paradigm of early-life stress that is inherited across generations and increases cancer risk in tumor-prone mice.


Asunto(s)
Oxitocina , Estrés Psicológico , Animales , Femenino , Ratones , Carcinogénesis , Lactancia , Ratones Noqueados , Oxitocina/metabolismo , Oxitocina/farmacología , Proteína p53 Supresora de Tumor/genética
4.
Cancer Gene Ther ; 30(5): 671-682, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36536122

RESUMEN

Acute promyelocytic leukemia (APL) is an aggressive subtype of acute myeloid leukemia (AML) in which the PML/RARα fusion protein exerts oncogenic activities by recruiting repressive complexes to the promoter of specific target genes. Other epigenetic perturbations, as alterations of histone H3 lysine 9 trimethylation (H3K9me3), have been frequently found in AMLs and are associated with leukemogenesis and leukemia progression. Here, we characterized the epigenomic effects of maltonis, a novel maltol-derived molecule, in APL cells. We demonstrate that maltonis treatments induce a profound remodulation of the histone code, reducing global H3K9me3 signal and modulating other histone post-translational modifications. Transcriptomic and epigenomic analyses revealed that maltonis exposure induces changes of genes expression associated with a genomic redistribution of histone H3 lysine 4 trimethylation (H3K4me3) and lysine 27 acetylation (H3K27ac). Upregulation of interferon alpha and gamma response and downregulation of c-MYC target genes, in function of c-MYC reduced expression (monitored in all the hematopoietic neoplasms tested), represent the most significant modulated pathways. These data demonstrate the ability of maltonis to epigenetically reprogram the gene expression profile of APL cells, inducing an intriguing antiviral-like response, concomitantly with the downregulation of c-MYC-related pathways, thus making it an attractive candidate for antileukemic therapy.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Humanos , Histonas/genética , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Regulación hacia Abajo , Antivirales/farmacología , Epigenómica , Lisina/genética , Lisina/metabolismo , Lisina/farmacología , Leucemia Mieloide Aguda/genética , Proteínas de Fusión Oncogénica/genética , Diferenciación Celular
5.
Aging Cell ; 21(3): e13545, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35166014

RESUMEN

Frailty affects the physical, cognitive, and social domains exposing older adults to an increased risk of cardiovascular disease and death. The mechanisms linking frailty and cardiovascular outcomes are mostly unknown. Here, we studied the association of abundance (flow cytometry) and gene expression profile (RNAseq) of stem/progenitor cells (HSPCs) and molecular markers of inflammaging (ELISA) with the cardiorespiratory phenotype and prospective adverse events of individuals classified according to levels of frailty. Two cohorts of older adults were enrolled in the study. In a cohort of pre-frail 35 individuals (average age: 75 years), a physical frailty score above the median identified subjects with initial alterations in cardiorespiratory function. RNA sequencing revealed S100A8/A9 upregulation in HSPCs from the bone marrow (>10-fold) and peripheral blood (>200-fold) of individuals with greater physical frailty. Moreover higher frailty was associated with increased alarmins S100A8/A9 and inflammatory cytokines in peripheral blood. We then studied a cohort of 104 more frail individuals (average age: 81 years) with multidomain health deficits. Reduced levels of circulating HSPCs and increased S100A8/A9 concentrations were independently associated with the frailty index. Remarkably, low HSPCs and high S100A8/A9 simultaneously predicted major adverse cardiovascular events at 1-year follow-up after adjustment for age and frailty index. In conclusion, inflammaging characterized by alarmin and pro-inflammatory cytokines in pre-frail individuals is mirrored by the pauperization of HSPCs in frail older people with comorbidities. S100A8/A9 is upregulated within HSPCs, identifying a phenotype that associates with poor cardiovascular outcomes.


Asunto(s)
Alarminas , Fragilidad , Anciano , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Citocinas/metabolismo , Fragilidad/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Estudios Prospectivos
6.
Clin Epigenetics ; 10(1): 143, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30446010

RESUMEN

BACKGROUND: The introduction of pathology tissue-chromatin immunoprecipitation (PAT-ChIP), a technique allowing chromatin immunoprecipitation (ChIP) from formalin-fixed paraffin-embedded (FFPE) tissues, has extended the application of chromatin studies to clinical patient samples. However, extensive crosslinking introduced during routine tissue fixation of clinical specimens may hamper the application of PAT-ChIP to genome-wide studies (PAT-ChIP-Seq) from archived tissue samples. The reduced efficiency in chromatin extraction from over-fixed formalin archival samples is the main hurdle to overcome, especially when low abundant epigenetic marks (e.g., H3K4me3) are investigated. RESULTS: We evaluated different modifications of the original PAT-ChIP protocol to improve chromatin isolation from FFPE tissues. With this aim, we first made extensive usage of a normal human colon specimen fixed at controlled conditions (24 h, 48 h, and 72 h) to mimic the variability of tissue fixation that is most frequently found in archived samples. Different conditions of chromatin extraction were tested applying either diverse sonication protocols or heat-mediated limited reversal of crosslinking (LRC). We found that, if compared with canonical PAT-ChIP protocol, LRC strongly increases chromatin extraction efficiency, especially when 72-h fixed FFPE samples are used. The new procedure, that we named enhanced PAT-ChIP (EPAT-ChIP), was then applied at genome-wide level using an archival sample of invasive breast carcinoma to investigate H3K4me3, a lowly abundant histone modification, and H3K27me3 and H3K27ac, two additional well-known histone marks. CONCLUSIONS: EPAT-ChIP procedure improves the efficiency of chromatin isolation from FFPE samples allowing the study of long time-fixed specimens (72 h), as well as the investigation of low distributed epigenetic marks (e.g., H3K4me3) and the analysis of multiple histone marks from low amounts of starting material. We believe that EPAT-ChIP will facilitate the application of chromatin studies to archived pathology samples, thus contributing to extend the current understanding of cancer epigenomes and enabling the identification of clinically useful tumor biomarkers.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Inmunoprecipitación de Cromatina/métodos , Epigenómica/métodos , Metilación de ADN , Femenino , Perfilación de la Expresión Génica , Células HeLa , Humanos , Adhesión en Parafina , Análisis de Secuencia de ADN/métodos , Fijación del Tejido
7.
Cell Physiol Biochem ; 46(1): 389-400, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29590658

RESUMEN

BACKGROUND/AIMS: Life on Earth is constantly exposed to electromagnetic fields (EMFs) and the effects induced by EMFs on biological systems have been extensively studied producing different and sometimes contradictory results. Extremely low-frequency electromagnetic fields (ELF-EMFs) have shown to play a role in regulating cell proliferation and differentiation, although how EMFs influence these processes remains unclear. Human acute promyelocytic leukemia (APL) cells are characterized by the arrest of differentiation at the promyelocytic stage due to epigenetic perturbations induced by PML/RARα fusion protein (Promyelocytic Leukemia protein - PML/Retinoic Acid Receptor alpha - RARα). Therapeutic administration of all-trans retinoic acid (ATRA) re-establishes the leukemogenic mechanism re-inducing the normal differentiation processes. METHODS: We studied the effects of ELF-EMFs (50 Hz, 2 mT) on the ATRA-mediated granulocytic differentiation process of APL NB4 cells (a cell line established from the bone marrow of a patient affected by the acute promyelocytic leukemia) by monitoring cellular proliferation and morphology, nitrob lue tetrazolium (NBT) reduction and the expression of differentiation surface markers. Finally, we investigated mechanisms focusing on reactive oxygen species (ROS) generation and related molecular pathways. RESULTS: ELF-EMF exposure decreases cellular proliferation potential and helps ATRA-treated NB4 cells to mature. Furthermore, the analysis of ROS production and the consequent extracellular signal regulated kinases (ERK1/2) phosphorylation suggest that a changed intracellular oxidative balance may influence the biological effects of ELF-EMFs. CONCLUSIONS: These results indicate that the exposure to ELF-EMF promotes ATRA-induced granulocytic differentiation of APL cells.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Tretinoina/farmacología , Células de la Médula Ósea/citología , Diferenciación Celular/efectos de la radiación , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Campos Electromagnéticos , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacología
8.
Sci Rep ; 6: 30917, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27498973

RESUMEN

We describe the biological effects of a polyphenol-rich strawberry extract (PRSE), obtained from the "Alba" variety, on the highly aggressive and invasive basal-like breast cancer cell line A17. Dose-response and time-course experiments showed that PRSE is able to decrease the cellular viability of A17 cells in a time- and dose-dependent manner. PRSE effect on cell survival was investigated in other tumor and normal cell lines of both mouse and human origin, demonstrating that PRSE is more active against breast cancer cells. Cytofluorimetric analysis of A17 cells demonstrated that sub-lethal doses of PRSE reduce the number of cells in S phase, inducing the accumulation of cells in G1 phase of cell cycle. In addition, the migration of A17 cells was studied monitoring the ability of PRSE to inhibit cellular mobility. Gene expression analysis revealed the modulation of 12 genes playing different roles in the cellular migration, adhesion and invasion processes. Finally, in vivo experiments showed the growth inhibition of A17 cells orthotopically transplanted into FVB syngeneic mice fed with PRSE. Overall, we demonstrated that PRSE exerts important biological activities against a highly invasive breast cancer cell line both in vitro and in vivo suggesting the strawberry extracts as preventive/curative food strategy.


Asunto(s)
Antineoplásicos/farmacología , Fragaria/química , Extractos Vegetales/farmacología , Polifenoles/farmacología , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/aislamiento & purificación , Neoplasias de la Mama/tratamiento farmacológico , Adhesión Celular/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Xenoinjertos , Humanos , Ratones , Trasplante de Neoplasias , Extractos Vegetales/administración & dosificación , Extractos Vegetales/aislamiento & purificación , Polifenoles/administración & dosificación , Polifenoles/aislamiento & purificación , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA