Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Life Sci Alliance ; 6(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37863656

RESUMEN

Primary cilia are cellular surface projections enriched in receptors and signaling molecules, acting as signaling hubs that respond to stimuli. Malfunctions in primary cilia have been linked to human diseases, including retinopathies and ocular defects. Here, we focus on TMEM107, a protein localized to the transition zone of primary cilia. TMEM107 mutations were found in patients with Joubert and Meckel-Gruber syndromes. A mouse model lacking Tmem107 exhibited eye defects such as anophthalmia and microphthalmia, affecting retina differentiation. Tmem107 expression during prenatal mouse development correlated with phenotype occurrence, with enhanced expression in differentiating retina and optic stalk. TMEM107 deficiency in retinal organoids resulted in the loss of primary cilia, down-regulation of retina-specific genes, and cyst formation. Knocking out TMEM107 in human ARPE-19 cells prevented primary cilia formation and impaired response to Smoothened agonist treatment because of ectopic activation of the SHH pathway. Our data suggest TMEM107 plays a crucial role in early vertebrate eye development and ciliogenesis in the differentiating retina.


Asunto(s)
Trastornos de la Motilidad Ciliar , Enfermedades Renales Poliquísticas , Retinitis Pigmentosa , Femenino , Embarazo , Humanos , Ratones , Animales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Retina/metabolismo , Enfermedades Renales Poliquísticas/genética , Retinitis Pigmentosa/metabolismo , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/metabolismo
2.
Cell Mol Life Sci ; 78(16): 6033-6049, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34274976

RESUMEN

Melanocytes are pigmented cells residing mostly in the skin and hair follicles of vertebrates, where they contribute to colouration and protection against UV-B radiation. However, the spectrum of their functions reaches far beyond that. For instance, these pigment-producing cells are found inside the inner ear, where they contribute to the hearing function, and in the heart, where they are involved in the electrical conductivity and support the stiffness of cardiac valves. The embryonic origin of such extracutaneous melanocytes is not clear. We took advantage of lineage-tracing experiments combined with 3D visualizations and gene knockout strategies to address this long-standing question. We revealed that Schwann cell precursors are recruited from the local innervation during embryonic development and give rise to extracutaneous melanocytes in the heart, brain meninges, inner ear, and other locations. In embryos with a knockout of the EdnrB receptor, a condition imitating Waardenburg syndrome, we observed only nerve-associated melanoblasts, which failed to detach from the nerves and to enter the inner ear. Finally, we looked into the evolutionary aspects of extracutaneous melanocytes and found that pigment cells are associated mainly with nerves and blood vessels in amphibians and fish. This new knowledge of the nerve-dependent origin of extracutaneous pigment cells might be directly relevant to the formation of extracutaneous melanoma in humans.


Asunto(s)
Encéfalo/fisiología , Oído Interno/fisiología , Corazón/fisiología , Meninges/fisiología , Sistema Nervioso/fisiopatología , Células de Schwann/fisiología , Anfibios/metabolismo , Anfibios/fisiología , Animales , Encéfalo/metabolismo , Linaje de la Célula/fisiología , Oído Interno/metabolismo , Desarrollo Embrionario/fisiología , Femenino , Peces/metabolismo , Peces/fisiología , Melanocitos/metabolismo , Melanocitos/fisiología , Meninges/metabolismo , Ratones , Sistema Nervioso/metabolismo , Embarazo , Receptor de Endotelina B/metabolismo , Células de Schwann/metabolismo
3.
Stem Cells Int ; 2019: 4279481, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30805008

RESUMEN

Tumor necrosis factor-related apoptosis-inducing ligand-TRAIL-is a protein operating as a ligand capable of inducing apoptosis particularly in cancerously transformed cells, while normal healthy cells are typically nonresponsive. We have previously demonstrated that pluripotent human embryonic stem cells (hESC) are also refractory to TRAIL, even though they express all canonical components of the death receptor-induced apoptosis pathway. In this study, we have examined a capacity of DNA damage to provoke sensitivity of hESC to TRAIL. The extent of DNA damage, behavior of molecules involved in apoptosis, and response of hESC to TRAIL were investigated. The exposure of hESC to 1 µM and 2 µM concentrations of cisplatin have led to the formation of 53BP1 and γH2AX foci, indicating the presence of double-strand breaks in DNA, without affecting the expression of proteins contributing to mitochondrial membrane integrity. Interestingly, cisplatin upregulated critical components of the extrinsic apoptotic pathway-initiator caspase 8, effector caspase 3, and the cell death receptors. The observed increase of expression of the extrinsic apoptotic pathway components was sufficient to sensitize hESC to TRAIL-induced apoptosis; immense cell dying accompanied by enhanced PARP cleavage, processing of caspase 8, and full activation of caspase 3 were all observed after the treatment combining cisplatin and TRAIL. Finally, we have demonstrated the central role of caspase 8 in this process, since its downregulation abrogated the sensitizing effect of cisplatin.

4.
Stem Cells Dev ; 26(5): 328-340, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27863459

RESUMEN

HMGB1 and HMGB2 proteins have been implicated in numerous cellular processes, including proliferation, differentiation, apoptosis, and tumor growth. It is unknown whether they are involved in regulating the typical functions of pluripotent human embryonic stem cells (hESCs) and/or those of the differentiated derivatives of hESCs. Using inducible, stably transfected hESCs capable of shRNA-mediated knockdown of HMGB1 and HMGB2, we provide evidence that downregulation of HMGB1 and/or HMGB2 in undifferentiated hESCs does not affect the stemness of cells and induces only minor changes to the proliferation rate, cell-cycle profile, and apoptosis. After differentiation is induced, however, the downregulation of those proteins has important effects on proliferation, apoptosis, telomerase activity, and the efficiency of differentiation toward the neuroectodermal lineage. Furthermore, those processes are affected only when one, but not both, of the two proteins is downregulated; the knockdown of both HMGB1 and HMGB2 results in a normal phenotype. Those results advance our knowledge of regulation of hESC and human neuroectodermal cell differentiation and illustrate the distinct roles of HMGB1 and HMGB2 during early human development.


Asunto(s)
Diferenciación Celular , Proteína HMGB1/metabolismo , Proteína HMGB2/metabolismo , Histonas/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Apoptosis/genética , Ciclo Celular/genética , Línea Celular , Linaje de la Célula/genética , Proliferación Celular/genética , Autorrenovación de las Células/genética , Forma de la Célula/genética , Regulación hacia Abajo/genética , Humanos , Placa Neural/citología , Telomerasa/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA