Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Ecol Evol ; 3(7): 1110-1120, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31182815

RESUMEN

Bats are the longest-lived mammals, given their body size. However, the underlying molecular mechanisms of their extended healthspans are poorly understood. To address this question we carried out an eight-year longitudinal study of ageing in long-lived bats (Myotis myotis). We deep-sequenced ~1.7 trillion base pairs of RNA from 150 blood samples collected from known aged bats to ascertain the age-related transcriptomic shifts and potential microRNA-directed regulation that occurred. We also compared ageing transcriptomic profiles between bats and other mammals by analysis of 298 longitudinal RNA sequencing datasets. Bats did not show the same transcriptomic changes with age as commonly observed in humans and other mammals, but rather exhibited a unique, age-related gene expression pattern associated with DNA repair, autophagy, immunity and tumour suppression that may drive their extended healthspans. We show that bats have naturally evolved transcriptomic signatures that are known to extend lifespan in model organisms, and identify novel genes not yet implicated in healthy ageing. We further show that bats' longevity profiles are partially regulated by microRNA, thus providing novel regulatory targets and pathways for future ageing intervention studies. These results further disentangle the ageing process by highlighting which ageing pathways contribute most to healthy ageing in mammals.


Asunto(s)
Quirópteros , Animales , Humanos , Longevidad , Estudios Longitudinales , Mamíferos , Transcriptoma
2.
Proc Biol Sci ; 286(1894): 20182359, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30963865

RESUMEN

The effective size of a population is the size of an ideal population which would undergo genetic drift at the same rate as the real population. The balance between selection and genetic drift depends on the effective population size ( Ne), rather than the real numbers of individuals in the population ( N). The objectives of the present study were to estimate Ne in the potato cyst nematode Globodera pallida and to explore the causes of a low Ne/ N ratio in cyst nematodes using artificial populations. Using a temporal analysis of 24 independent populations, the median Ne was 58 individuals (min Ne = 25 and max Ne = 228). Ne is commonly lower than N but in the case of cyst nematodes, the Ne/ N ratio was extremely low. Using artificial populations showed that this low ratio did not result from migration, selection and overlapping generations, but could be explain by the fact that G. pallida populations deviate in structure from the assumptions of the ideal population by having unequal sex ratios, high levels of inbreeding and a high variance in family sizes. The consequences of a low Ne, resulting in a strong intensity of genetic drift, could be important for their control because G. pallida populations will have a low capacity to adapt to changing environments.


Asunto(s)
Enfermedades de las Plantas/parasitología , Solanum tuberosum/parasitología , Tylenchoidea/fisiología , Animales , Densidad de Población
3.
Evol Appl ; 9(8): 1005-16, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27606008

RESUMEN

Studying wild pathogen populations in natural ecosystems offers the opportunity to better understand the evolutionary dynamics of biotic diseases in crops and to enhance pest control strategies. We used simulations and genetic markers to investigate the spatial and temporal population genetic structure of wild populations of the beet cyst nematode Heterodera schachtii on a wild host plant species, the sea beet (Beta vulgaris spp. maritima), the wild ancestor of cultivated beets. Our analysis of the variation of eight microsatellite loci across four study sites showed that (i) wild H. schachtii populations displayed fine-scaled genetic structure with no evidence of substantial levels of gene flow beyond the scale of the host plant, and comparisons with simulations indicated that (ii) genetic drift substantially affected the residual signals of isolation-by-distance processes, leading to departures from migration-drift equilibrium. In contrast to what can be suspected for (crop) field populations, this showed that wild cyst nematodes have very low dispersal capabilities and are strongly disconnected from each other. Our results provide some key elements for designing pest control strategies, such as decreasing passive dispersal events to limit the spread of virulence among field nematode populations.

4.
Evol Appl ; 9(3): 489-501, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26989440

RESUMEN

The sustainability of modern agriculture relies on strategies that can control the ability of pathogens to overcome chemicals or genetic resistances through natural selection. This evolutionary potential, which depends partly on effective population size (N e ), is greatly influenced by human activities. In this context, wild pathogen populations can provide valuable information for assessing the long-term risk associated with crop pests. In this study, we estimated the effective population size of the beet cyst nematode, Heterodera schachtii, by sampling 34 populations infecting the sea beet Beta vulgaris spp. maritima twice within a one-year period. Only 20 populations produced enough generations to analyze the variation in allele frequencies, with the remaining populations showing a high mortality rate of the host plant after only 1 year. The 20 analyzed populations showed surprisingly low effective population sizes, with most having N e close to 85 individuals. We attribute these low values to the variation in population size through time, systematic inbreeding, and unbalanced sex-ratios. Our results suggest that H. schachtii has low evolutionary potential in natural environments. Pest control strategies in which populations on crops mimic wild populations may help prevent parasite adaptation to host resistance.

5.
Mol Ecol ; 24(8): 1654-77, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25735762

RESUMEN

Deviations of genotypic frequencies from Hardy-Weinberg equilibrium (HWE) expectations could reveal important aspects of the biology of populations. Deviations from HWE due to heterozygote deficits have been recorded for three plant-parasitic nematode species. However, it has never been determined whether the observed deficits were due (i) to the presence of null alleles, (ii) to a high level of consanguinity and/or (iii) to a Wahlund effect. The aim of the present work was, while taking into the possible confounding effect of null alleles, to disentangle consanguinity and Wahlund effect in natural populations of those three economically important cyst nematodes using microsatellite markers: Globodera pallida, G. tabacum and Heterodera schachtii, pests of potato, tobacco and sugar beet, respectively. The results show a consistent pattern of heterozygote deficiency in the three nematode species sampled at the spatial scale of the host plant. We demonstrate that the prevalence of null alleles is weak and that heterozygote deficits do not have a single origin. Our results suggested that it is restricted dispersal that leads to heterozygote deficits through both consanguinity and substructure, which effects can be linked to soil movement, cyst density, and the number of generations per year. We discuss potential implications for the durability of plant resistances that are used to protect crops against parasites in which mating between relatives occur. While consanguineous mating leads to homozygosity at all loci, including loci governing avirulence/virulence, which favours the expression of virulence when recessive, the Wahlund effect is expected to have no particular effect on the adaptation of nematodes to resistances.


Asunto(s)
Variación Genética , Heterocigoto , Tylenchoidea/genética , Alelos , Animales , Beta vulgaris/parasitología , Frecuencia de los Genes , Genética de Población , Genotipo , Endogamia , Funciones de Verosimilitud , Repeticiones de Microsatélite , Solanum tuberosum/parasitología , Nicotiana/parasitología
6.
Eur Radiol ; 24(1): 136-42, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23979107

RESUMEN

OBJECTIVE: To develop automated deformation modelling for the assessment of cerebrospinal fluid (CSF) local volume changes in patients with hydrocephalus treated by surgery. METHODS: Ventricular and subarachnoid CSF volume changes were mapped by calculating the Jacobian determinant of the deformation fields obtained after non-linear registration of pre- and postoperative images. A total of 31 consecutive patients, 15 with communicating hydrocephalus (CH) and 16 with non-communicating hydrocephalus (NCH), were investigated before and after surgery using a 3D SPACE (sampling perfection with application optimised contrast using different flip-angle evolution) sequence. Two readers assessed CSF volume changes using 3D colour-encoded maps. The Evans index and postoperative volume changes of the lateral ventricles and sylvian fissures were quantified and statistically compared. RESULTS: Before surgery, sylvian fissure and brain ventricle volume differed significantly between CH and NCH (P = 0.001 and P = 0.025, respectively). After surgery, 3D colour-encoded maps allowed for the visual recognition of the CSF volume changes in all patients. The amounts of ventricle volume loss of CH and NCH patients were not significantly different (P = 0.30), whereas readjustment of the sylvian fissure volume was conflicting in CH and NCH patients (P < 0.001). The Evans index correlated with ventricle volume in NCH patients. CONCLUSION: 3D mapping of CSF volume changes is feasible providing a quantitative follow-up of patients with hydrocephalus. KEY POINTS: • MRI can provide helpful information about cerebrospinal fluid volumes. • 3D CSF mapping allows quantitative follow-up in communicating and non-communicating hydrocephalus. • Following intervention, fissures and cisterns readjust in both forms of hydrocephalus. • These findings support the hypothesis of suprasylvian block in communicating hydrocephalus. • 3D mapping may improve shunt dysfunction detection and guide valve pressure settings.


Asunto(s)
Ventrículos Cerebrales/patología , Líquido Cefalorraquídeo/metabolismo , Hidrocefalia/diagnóstico , Imagenología Tridimensional , Imagen por Resonancia Magnética/métodos , Procedimientos Neuroquirúrgicos , Adulto , Anciano , Anciano de 80 o más Años , Ventrículos Cerebrales/metabolismo , Ventrículos Cerebrales/fisiopatología , Femenino , Estudios de Seguimiento , Humanos , Hidrocefalia/líquido cefalorraquídeo , Hidrocefalia/cirugía , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Espacio Subaracnoideo/patología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA