Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Neurochem Res ; 49(8): 2021-2037, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38814360

RESUMEN

Acetylcholine is the main neurotransmitter at the vertebrate neuromuscular junctions (NMJs). ACh exocytosis is precisely modulated by co-transmitter ATP and its metabolites. It is assumed that ATP/ADP effects on ACh release rely on activation of presynaptic Gi protein-coupled P2Y13 receptors. However, downstream signaling mechanism of ATP/ADP-mediated modulation of neuromuscular transmission remains elusive. Using microelectrode recording and fluorescent indicators, the mechanism underlying purinergic regulation was studied in the mouse diaphragm NMJs. Pharmacological stimulation of purinoceptors with ADP decreased synaptic vesicle exocytosis evoked by both low and higher frequency stimulation. This inhibitory action was suppressed by antagonists of P2Y13 receptors (MRS 2211), Ca2+ mobilization (TMB8), protein kinase C (chelerythrine) and NADPH oxidase (VAS2870) as well as antioxidants. This suggests the participation of Ca2+ and reactive oxygen species (ROS) in the ADP-triggered signaling. Indeed, ADP caused an increase in cytosolic Ca2+ with subsequent elevation of ROS levels. The elevation of [Ca2+]in was blocked by MRS 2211 and TMB8, whereas upregulation of ROS was prevented by pertussis toxin (inhibitor of Gi protein) and VAS2870. Targeting the main components of lipid rafts, cholesterol and sphingomyelin, suppressed P2Y13 receptor-dependent attenuation of exocytosis and ADP-induced enhancement of ROS production. Inhibition of P2Y13 receptors decreased ROS production and increased the rate of exocytosis during intense activity. Thus, suppression of neuromuscular transmission by exogenous ADP or endogenous ATP can rely on P2Y13 receptor/Gi protein/Ca2+/protein kinase C/NADPH oxidase/ROS signaling, which is coordinated in a lipid raft-dependent manner.


Asunto(s)
Microdominios de Membrana , Unión Neuromuscular , Oxidación-Reducción , Transducción de Señal , Transmisión Sináptica , Animales , Unión Neuromuscular/metabolismo , Unión Neuromuscular/efectos de los fármacos , Microdominios de Membrana/metabolismo , Transmisión Sináptica/fisiología , Transmisión Sináptica/efectos de los fármacos , Ratones , Transducción de Señal/fisiología , Transducción de Señal/efectos de los fármacos , Masculino , Especies Reactivas de Oxígeno/metabolismo , Exocitosis/fisiología , Exocitosis/efectos de los fármacos , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacología , Calcio/metabolismo
2.
ACS Nano ; 18(9): 7011-7023, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38390865

RESUMEN

Ferroptotic cancer therapy has been extensively investigated since the genesis of the ferroptosis concept. However, the therapeutic efficacy of ferroptosis induction in heterogeneous and plastic melanoma has been compromised, because the melanocytic and transitory cell subpopulation is resistant to iron-dependent oxidative stress. Here, we report a phenotype-altering liposomal nanomedicine to enable the ferroptosis-resistant subtypes of melanoma cells vulnerable to lipid peroxidation via senescence induction. The strategy involves the ratiometric coencapsulation of a cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor (palbociclib) and a ferroptosis inducer (auranofin) within cRGD peptide-modified targeted liposomes. The two drugs showed a synergistic anticancer effect in the model B16F10 melanoma cells, as evidenced by the combination index analysis (<1). The liposomes could efficiently deliver both drugs into B16F10 cells in a targeted manner. Afterward, the liposomes potently induced the intracellular redox imbalance and lipid peroxidation. Palbociclib significantly provoked cell cycle arrest at the G0/G1 phase, which sensitized auranofin-caused ferroptosis through senescence induction. Meanwhile, palbociclib depleted intracellular glutathione (GSH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH), further boosting ferroptosis. The proof-of-concept was also demonstrated in the B16F10 tumor-bearing mice model. The current work offers a promising ferroptosis-targeting strategy for effectively treating heterogeneous melanoma by manipulating the cellular plasticity.


Asunto(s)
Ferroptosis , Melanoma , Animales , Ratones , Melanoma/tratamiento farmacológico , Liposomas/farmacología , Coenzimas/farmacología , Auranofina/farmacología , Peroxidación de Lípido
3.
Int J Mol Sci ; 24(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37240370

RESUMEN

Amyotrophic lateral sclerosis (ALS) is manifested as skeletal muscle denervation, loss of motor neurons and finally severe respiratory failure. Mutations of RNA-binding protein FUS are one of the common genetic reasons of ALS accompanied by a 'dying back' type of degeneration. Using fluorescent approaches and microelectrode recordings, the early structural and functional alterations in diaphragm neuromuscular junctions (NMJs) were studied in mutant FUS mice at the pre-onset stage. Lipid peroxidation and decreased staining with a lipid raft marker were found in the mutant mice. Despite the preservation of the end-plate structure, immunolabeling revealed an increase in levels of presynaptic proteins, SNAP-25 and synapsin 1. The latter can restrain Ca2+-dependent synaptic vesicle mobilization. Indeed, neurotransmitter release upon intense nerve stimulation and its recovery after tetanus and compensatory synaptic vesicle endocytosis were markedly depressed in FUS mice. There was a trend to attenuation of axonal [Ca2+]in increase upon nerve stimulation at 20 Hz. However, no changes in neurotransmitter release and the intraterminal Ca2+ transient in response to low frequency stimulation or in quantal content and the synchrony of neurotransmitter release at low levels of external Ca2+ were detected. At a later stage, shrinking and fragmentation of end plates together with a decrease in presynaptic protein expression and disturbance of the neurotransmitter release timing occurred. Overall, suppression of synaptic vesicle exo-endocytosis upon intense activity probably due to alterations in membrane properties, synapsin 1 levels and Ca2+ kinetics could be an early sign of nascent NMJ pathology, which leads to neuromuscular contact disorganization.


Asunto(s)
Esclerosis Amiotrófica Lateral , Animales , Ratones , Esclerosis Amiotrófica Lateral/genética , Proteína FUS de Unión a ARN/genética , Sinapsinas/genética , Sinapsinas/metabolismo , Unión Neuromuscular/metabolismo , Neurotransmisores/metabolismo
4.
Life Sci ; 310: 121120, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36302500

RESUMEN

AIMS: Neurotransmitter release requires high energy demands, making the nerve terminals metabolically fragile and susceptible to oxidative stress. ATP-sensitive potassium (KATP) channels can be an important regulator orchestrating the influence of metabolic-related signals on exocytosis. Here, the relevance of ROS in KATP channel-dependent control of neurotransmitter release at the frog neuromuscular junction was studied. METHODS: Microelectrode recordings of end plate potentials at the distal and proximal compartments of nerve terminals as well as fluorescent techniques were used. KEY FINDINGS: Activation of KATP channels in the proximal region suppressed evoked and spontaneous release in a lipid raft-dependent manner. Activation of KATP channels in the distal region reduced solely evoked release which was preserved after lipid raft disruption. Chelation of ROS potentiated the effects of KATP channel activation and unmasked the effects of KATP channel blocker on evoked exocytosis. Activation or inhibition of KATP channels suppressed or enhanced the depressant action of extracellular adenosine on evoked exocytosis. This was accompanied with an increase or decrease in adenosine-induced ROS production, respectively. KATP channel-dependent modulation of adenosine action was halted by antioxidant and NADPH-oxidase inhibitor. Also, activation of KATP channels led to an increase in ROS production suppressing the negative effects of extracellular ATP on evoked release in a ROS-dependent manner. SIGNIFICANCE: KATP channel-mediated modulation of release has specific features in distal and proximal compartments and depends on endogenous ROS levels and lipid raft integrity. Activation of KATP channels suppresses the action of extracellular adenosine and ATP on evoked release by increasing ROS production.


Asunto(s)
Adenosina Trifosfato , Unión Neuromuscular , Especies Reactivas de Oxígeno/farmacología , Adenosina Trifosfato/farmacología , Adenosina/farmacología , Neurotransmisores/farmacología , Canales KATP
5.
Brain Res ; 1795: 148072, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36075465

RESUMEN

We investigated the effects of catecholamines, adrenaline and noradrenaline, as well as ß-adrenoceptor (AR) modulators on a resting membrane potential at the junctional and extrajunctional regions of mouse fast-twitch Levator auris longus muscle. The aim of the study was to find which AR subtypes, signaling molecules and Na,K-ATPase isoforms are involved in the hyperpolarizing action of catecholamines and whether this action could be accompanied by changes in the pump abundance on the sarcolemma. Adrenaline, noradrenaline and specific ß2-AR agonist induced hyperpolarization of both junctional and extrajunctional membrane, but the underlying mechanisms were different. In the junctional membrane the hyperpolarization depended on α2 isoform of the Na,K-ATPase and Gi-protein, whereas in the extrajunctional regions the hyperpolarization mainly relied on α1 isoform of Na,K-ATPase and adenylyl cyclase activities. In both junctional and extrajunctional regions, AR activation caused an increase in Na,K-ATPase abundance in the plasmalemma in a protein kinase A-dependent manner. Thus, the compartment-specific mechanisms are responsible for catecholamine-mediated hyperpolarization in the skeletal muscle.


Asunto(s)
Catecolaminas , ATPasa Intercambiadora de Sodio-Potasio , Adenilil Ciclasas/metabolismo , Animales , Catecolaminas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Epinefrina/metabolismo , Ratones , Músculo Esquelético/metabolismo , Norepinefrina/metabolismo , Isoformas de Proteínas/metabolismo , Receptores Adrenérgicos/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
6.
Free Radic Biol Med ; 174: 121-134, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34391813

RESUMEN

Inflammatory reactions induce changes in the neuromuscular system. The mechanisms underlying this link are unclear. Besides cytokines and reactive oxygen species (ROS), production of an antiviral oxysterol 25-hydroxycholesterol (25HC) by immune cells is quickly increased in response to inflammation. Hypothetically, 25HC could contribute to regulation of neuromuscular activity as well as redox status. We found that 25HC (0.01-10 µM) can bidirectionally modulate neurotransmission in mice diaphragm, the main respiratory muscle. Low concentrations (≤0.1 µM) of 25HC reduced involvement of synaptic vesicles (SVs) into exocytosis during 20-Hz activity, whereas higher inflammatory-related concentrations (≥1 µM) had a profound potentiating effect on SV mobilization. The latter stimulatory action of 25HC was accompanied by increase in Ca2+ release from intracellular stores via IP3 receptors. Both increase in SV mobilization and [Ca2+]in were suppressed by a specific antagonist of liver X receptors (LXRs). These receptors formed clusters within the synaptic membranes in a lipid raft-dependent manner. Either raft disruption or intracellular Ca2+ chelation prevented 25HC-mediated acceleration of the exocytotic rate. The same action had inhibition of estrogen receptor α, Gi-protein, Gßγ, phospholipase C and protein kinase C. Additionally, 1 µM 25HC upregulated ROS production in a Ca2+-dependent way and an antioxidant partially decreased the exocytosis-promoting effect of 25HC. Thus, 25HC has prooxidant properties and it is a potent regulator of SV mobilization via activation of lipid raft-associated LXRs which can trigger signaling via estrogen receptor α - Gi-protein - Gßγ - phospholipase C - Ca2+ - protein kinase C pathway. 25HC-mediated increase in ROS may modulate this signaling.


Asunto(s)
Oxiesteroles , Animales , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Microdominios de Membrana/metabolismo , Ratones , Transducción de Señal , Transmisión Sináptica
7.
Neural Regen Res ; 16(9): 1762-1763, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33510066
8.
Purinergic Signal ; 15(1): 107-117, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30756226

RESUMEN

Extracellular ATP and nicotinamide adenine dinucleotide (ß-NAD) demonstrate properties of neurotransmitters and neuromodulators in peripheral and central nervous system. It has been shown previously that ATP and ß-NAD affect cardiac functioning in adult mammals. Nevertheless, the modulation of cardiac activity by purine compounds in the early postnatal development is still not elucidated. Also, the potential influence of ATP and ß-NAD on cholinergic neurotransmission in the heart has not been investigated previously. Age-dependence of electrophysiological effects produced by extracellular ATP and ß-NAD was studied in the rat myocardium using sharp microelectrode technique. ATP and ß-NAD could affect ventricular and supraventricular myocardium independent from autonomic influences. Both purines induced reduction of action potentials (APs) duration in tissue preparations of atrial, ventricular myocardium, and myocardial sleeves of pulmonary veins from early postnatal rats similarly to myocardium of adult animals. Both purine compounds demonstrated weak age-dependence of the effect. We have estimated the ability of ATP and ß-NAD to alter cholinergic effects in the heart. Both purines suppressed inhibitory effects produced by stimulation of intracardiac parasympathetic nerve in right atria from adult animals, but not in preparations from neonates. Also, ATP and ß-NAD suppressed rest and evoked release of acetylcholine (ACh) in adult animals. ß-NAD suppressed effects of parasympathetic stimulation and ACh release stronger than ATP. In conclusion, ATP and ß-NAD control the heart at the postsynaptic and presynaptic levels via affecting the cardiac myocytes APs and ACh release. Postsynaptic and presynaptic effects of purines may be antagonistic and the latter demonstrates age-dependence.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Adenosina Trifosfato/farmacología , Corazón/efectos de los fármacos , Miocardio/metabolismo , NAD/farmacología , Potenciales de Acción/fisiología , Animales , Femenino , Masculino , Ratas , Ratas Wistar , Transmisión Sináptica/fisiología
9.
J Gen Physiol ; 147(2): 175-88, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26755774

RESUMEN

The Na,K-ATPase is essential for the contractile function of skeletal muscle, which expresses the α1 and α2 subunit isoforms of Na,K-ATPase. The α2 isozyme is predominant in adult skeletal muscles and makes a greater contribution in working compared with noncontracting muscles. Hindlimb suspension (HS) is a widely used model of muscle disuse that leads to progressive atrophy of postural skeletal muscles. This study examines the consequences of acute (6-12 h) HS on the functioning of the Na,K-ATPase α1 and α2 isozymes in rat soleus (disused) and diaphragm (contracting) muscles. Acute disuse dynamically and isoform-specifically regulates the electrogenic activity, protein, and mRNA content of Na,K-ATPase α2 isozyme in rat soleus muscle. Earlier disuse-induced remodeling events also include phospholemman phosphorylation as well as its increased abundance and association with α2 Na,K-ATPase. The loss of α2 Na,K-ATPase activity results in reduced electrogenic pump transport and depolarized resting membrane potential. The decreased α2 Na,K-ATPase activity is caused by a decrease in enzyme activity rather than by altered protein and mRNA content, localization in the sarcolemma, or functional interaction with the nicotinic acetylcholine receptors. The loss of extrajunctional α2 Na,K-ATPase activity depends strongly on muscle use, and even the increased protein and mRNA content as well as enhanced α2 Na,K-ATPase abundance at this membrane region after 12 h of HS cannot counteract this sustained inhibition. In contrast, additional factors may regulate the subset of junctional α2 Na,K-ATPase pool that is able to recover during HS. Notably, acute, low-intensity muscle workload restores functioning of both α2 Na,K-ATPase pools. These results demonstrate that the α2 Na,K-ATPase in rat skeletal muscle is dynamically and acutely regulated by muscle use and provide the first evidence that the junctional and extrajunctional pools of the α2 Na,K-ATPase are regulated differently.


Asunto(s)
Isoenzimas/metabolismo , Músculo Esquelético/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Masculino , Potenciales de la Membrana/fisiología , Proteínas de la Membrana/metabolismo , Contracción Muscular/fisiología , Fosfoproteínas/metabolismo , Fosforilación/fisiología , Ratas , Ratas Wistar , Receptores Nicotínicos/metabolismo , Sarcolema/metabolismo
10.
Eur J Pharmacol ; 765: 140-53, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26297975

RESUMEN

Fenoterol, a ß2-adrenoceptor agonist, has anti-apoptotic action in cardiomyocytes and induces a specific pattern of downstream signaling. We have previously reported that exposure to fenoterol (5 µM) results in a delayed positive inotropic effect which is related to changes in both Ca2+ transient and NO. Here, the changes in reactive oxygen species (ROS) production in response to the fenoterol administration and the involvement of ROS in effect of this agonist on contractility were investigated in mouse isolated atria. Stimulation of ß2-adrenoceptor increases a level of extracellular ROS, while intracellular ROS level rises only after removal of fenoterol from the bath. NADPH-oxidase inhibitor (apocynin) prevents the increase in ROS production and the Nox2 isoform is immunofluorescently colocalized with ß2-adrenoceptor at the atrial myocytes. Treatments with antioxidants (N-acetyl-L-cysteine, NADPH inhibitors, exogenous catalases) significantly inhibit the fenoterol induced increase in the contraction amplitude, probably by attenuating Ca2+ transient and up-regulating NO production. ROS generated in a ß2-adrenoceptor-dependent manner can potentiate the activity of some Ca2+ channels. Indeed, inhibition of ryanodine receptors, TRPV-or L-type Ca2+- channels shows a similar efficacy in reduction of positive inotropic effect of both fenoterol and H2O2. In addition, detection of mitochondrial ROS indicates that fenoterol triggers a slow increase in ROS which is prevented by rotenone, but rotenone has no impact on the inotropic effect of fenoterol. We suggest that stimulation of ß2-adrenoceptor with fenoterol causes the activation of NADPH-oxidase and after the agonist removal extracellularly generated ROS penetrates into the cell, increasing the atrial contractions probably via Ca2+ channels.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Función del Atrio Izquierdo/fisiología , Cardiotónicos/farmacología , Contracción Miocárdica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Animales , Función del Atrio Izquierdo/efectos de los fármacos , Masculino , Ratones , Contracción Miocárdica/fisiología , Técnicas de Cultivo de Órganos
11.
J Physiol ; 592(22): 4995-5009, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25326454

RESUMEN

Using electrophysiological and optical techniques, we studied the mechanisms by which cholesterol depletion stimulates spontaneous transmitter release by exocytosis at the frog neuromuscular junction. We found that methyl-ß-cyclodextrin (MCD, 10 mM)-mediated exhaustion of cholesterol resulted in the enhancement of reactive oxygen species (ROS) production, which was prevented by the antioxidant N-acetyl cysteine (NAC) and the NADPH oxidase inhibitor apocynin. An increase in ROS levels occurred both extra- and intracellularly, and it was associated with lipid peroxidation in synaptic regions. Cholesterol depletion provoked a rise in the intracellular Ca(2+) concentration, which was diminished by NAC and transient receptor potential vanilloid (TRPV) channel blockers (ruthenium red and capsazepine). By contrast, the MCD-induced rise in [Ca(2+)]i remained unaffected if Ca(2+) release from endoplasmic stores was blocked by TMB8 (8-(diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride). The effects of cholesterol depletion on spontaneous release and exocytosis were significantly reduced by the antioxidant, intracellular Ca(2+) chelation with BAPTA-AM and blockers of TRPV channels. Bath application of the calcineurin antagonist cyclosporine A blocked MCD-induced enhancement of spontaneous release/exocytosis, whereas okadaic acid, an inhibitor of phosphatases PP1 and PP2A, had no effect. Thus, our findings indicate that enhancement of spontaneous exocytosis induced by cholesterol depletion may depend on ROS generation, leading to an influx of Ca(2+) via TRPV channels and, subsequently, activation of calcineurin.


Asunto(s)
Calcio/metabolismo , Colesterol/metabolismo , Exocitosis , Unión Neuromuscular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Acetofenonas/farmacología , Acetilcisteína/farmacología , Animales , Señalización del Calcio , Capsaicina/análogos & derivados , Capsaicina/farmacología , Ciclosporina/farmacología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/fisiología , Ácido Ocadaico/farmacología , Ranidae , Rojo de Rutenio/farmacología , Membranas Sinápticas/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , beta-Ciclodextrinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA