Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Transl Med ; 15(706): eadd1014, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37494470

RESUMEN

Optogenetics is a widely used technology with potential for translational research. A critical component of such applications is the ability to track the location of the transduced opsin in vivo. To address this problem, we engineered an excitatory opsin, ChRERα (hChR2(134R)-V5-ERα-LBD), that could be visualized using positron emission tomography (PET) imaging in a noninvasive, longitudinal, and quantitative manner. ChRERα consists of the prototypical excitatory opsin channelrhodopsin-2 (ChR2) and the ligand-binding domain (LBD) of the human estrogen receptor α (ERα). ChRERα showed conserved ChR2 functionality and high affinity for [18F]16α-fluoroestradiol (FES), an FDA-approved PET radiopharmaceutical. Experiments in rats demonstrated that adeno-associated virus (AAV)-mediated expression of ChRERα enables neural circuit manipulation in vivo and that ChRERα expression could be monitored using FES-PET imaging. In vivo experiments in nonhuman primates (NHPs) confirmed that ChRERα expression could be monitored at the site of AAV injection in the primary motor cortex and in long-range neuronal terminals for up to 80 weeks. The anatomical connectivity map of the primary motor cortex identified by FES-PET imaging of ChRERα expression overlapped with a functional connectivity map identified using resting state fMRI in a separate cohort of NHPs. Overall, our results demonstrate that ChRERα expression can be mapped longitudinally in the mammalian brain using FES-PET imaging and can be used for neural circuit modulation in vivo.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Ratas , Humanos , Animales , Femenino , Receptor alfa de Estrógeno/metabolismo , Opsinas/metabolismo , Tomografía de Emisión de Positrones , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Primates , Estradiol/metabolismo , Neoplasias de la Mama/metabolismo , Mamíferos/metabolismo
2.
Immunity ; 54(2): 225-234.e6, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33476547

RESUMEN

Microglia are activated in many neurological diseases and have been suggested to play an important role in the development of affective disorders including major depression. To investigate how microglial signaling regulates mood, we used bidirectional chemogenetic manipulations of microglial activity in mice. Activation of microglia in the dorsal striatum induced local cytokine expression and a negative affective state characterized by anhedonia and aversion, whereas inactivation of microglia blocked aversion induced by systemic inflammation. Interleukin-6 signaling and cyclooxygenase-1 mediated prostaglandin synthesis in the microglia were critical for the inflammation-induced aversion. Correspondingly, microglial activation led to a prostaglandin-dependent reduction of the excitability of striatal neurons. These findings demonstrate a mechanism by which microglial activation causes negative affect through prostaglandin-dependent modulation of striatal neurons and indicate that interference with this mechanism could milden the depressive symptoms in somatic and psychiatric diseases involving microglial activation.


Asunto(s)
Anhedonia/fisiología , Cuerpo Estriado/inmunología , Depresión/inmunología , Microglía/inmunología , Neuronas/fisiología , Animales , Animales Modificados Genéticamente , Conducta Animal , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Inflamación , Interleucina-6/metabolismo , Activación de Macrófagos , Ratones , Inflamación Neurogénica , Prostaglandinas/metabolismo
3.
Sci Transl Med ; 9(420)2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29237760

RESUMEN

The AAA+ adenosine triphosphatase (ATPase) Thorase plays a critical role in controlling synaptic plasticity by regulating the expression of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Bidirectional sequencing of exons of ATAD1, the gene encoding Thorase, in a cohort of patients with schizophrenia and healthy controls revealed rare Thorase variants. These variants caused defects in glutamatergic signaling by impairing AMPAR internalization and recycling in mouse primary cortical neurons. This contributed to increased surface expression of the AMPAR subunit GluA2 and enhanced synaptic transmission. Heterozygous Thorase-deficient mice engineered to express these Thorase variants showed altered synaptic transmission and several behavioral deficits compared to heterozygous Thorase-deficient mice expressing wild-type Thorase. These behavioral impairments were rescued by the competitive AMPAR antagonist Perampanel, a U.S. Food and Drug Administration-approved drug. These findings suggest that Perampanel may be useful for treating disorders involving compromised AMPAR-mediated glutamatergic neurotransmission.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Variación Genética , Glutamatos/metabolismo , Piridonas/farmacología , Transmisión Sináptica/efectos de los fármacos , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Conducta Animal , Células Cultivadas , Corteza Cerebral/patología , Endocitosis/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Heterocigoto , Humanos , Memoria/efectos de los fármacos , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nitrilos , Multimerización de Proteína , Conducta Social
4.
Nat Neurosci ; 20(3): 438-448, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28114294

RESUMEN

Afferent inputs to the ventral tegmental area (VTA) control reward-related behaviors through regulation of dopamine neuron activity. The nucleus accumbens (NAc) provides one of the most prominent projections to the VTA; however, recent studies have provided conflicting evidence regarding the function of these inhibitory inputs. Using optogenetics, cell-specific ablation, whole cell patch-clamp and immuno-electron microscopy, we found that NAc inputs synapsed directly onto dopamine neurons, preferentially activating GABAB receptors. GABAergic inputs from the NAc and local VTA GABA neurons were differentially modulated and activated separate receptor populations in dopamine neurons. Genetic deletion of GABAB receptors from dopamine neurons in adult mice did not affect general or morphine-induced locomotor activity, but markedly increased cocaine-induced locomotion. Collectively, our findings demonstrate notable selectivity in the inhibitory architecture of the VTA and suggest that long-range GABAergic inputs to dopamine neurons fundamentally regulate behavioral responses to cocaine.


Asunto(s)
Cocaína/farmacología , Inhibición Neural/fisiología , Núcleo Accumbens/fisiología , Receptores de GABA-B/fisiología , Recompensa , Área Tegmental Ventral/fisiología , Animales , Neuronas Dopaminérgicas/fisiología , Neuronas Dopaminérgicas/ultraestructura , Femenino , Técnicas de Silenciamiento del Gen , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones , Morfina/farmacología , Receptor de Adenosina A1/fisiología , Receptores de GABA-A/fisiología , Receptores de GABA-B/biosíntesis , Receptores de GABA-B/genética , Transmisión Sináptica/fisiología , Área Tegmental Ventral/ultraestructura
5.
Neuron ; 93(2): 425-440, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-28103482

RESUMEN

Fear learning is a fundamental behavioral process that requires dopamine (DA) release. Experience-dependent synaptic plasticity occurs on DA neurons while an organism is engaged in aversive experiences. However, whether synaptic plasticity onto DA neurons is causally involved in aversion learning is unknown. Here, we show that a stress priming procedure enhances fear learning by engaging VTA synaptic plasticity. Moreover, we took advantage of the ability of the ATPase Thorase to regulate the internalization of AMPA receptors (AMPARs) in order to selectively manipulate glutamatergic synaptic plasticity on DA neurons. Genetic ablation of Thorase in DAT+ neurons produced increased AMPAR surface expression and function that lead to impaired induction of both long-term depression (LTD) and long-term potentiation (LTP). Strikingly, animals lacking Thorase in DAT+ neurons expressed greater associative learning in a fear conditioning paradigm. In conclusion, our data provide a novel, causal link between synaptic plasticity onto DA neurons and fear learning.


Asunto(s)
Aprendizaje por Asociación/fisiología , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Miedo , Plasticidad Neuronal/fisiología , Estrés Psicológico , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Conducta Animal , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Técnicas de Inactivación de Genes , Captura por Microdisección con Láser , Aprendizaje/fisiología , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Ratones , Técnicas de Placa-Clamp , Receptores AMPA/metabolismo , Área Tegmental Ventral
6.
J Neurosci ; 34(13): 4558-66, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24672001

RESUMEN

Angelman syndrome (AS) is caused by the loss of Ube3A, an ubiquitin ligase that commits specific proteins to proteasomal degradation. How this defect causes autism and other pathological phenotypes associated with AS is unknown. Long-term depression (LTD) of excitatory synaptic transmission mediated by type 5 metabotropic glutamate (mGlu5) receptors was enhanced in hippocampal slices of Ube3A(m-/p+) mice, which model AS. No changes were found in NMDA-dependent LTD induced by low-frequency stimulation. mGlu5 receptor-dependent LTD in AS mice was sensitive to the protein synthesis inhibitor anisomycin, and relied on the same signaling pathways as in wild-type mice, e.g., the mitogen-activated protein kinase (MAPK) pathway, the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycine pathway, and protein tyrosine phosphatase. Neither the stimulation of MAPK and PI3K nor the increase in Arc (activity-regulated cytoskeleton-associated protein) levels in response to mGlu5 receptor activation were abnormal in hippocampal slices from AS mice compared with wild-type mice. mGlu5 receptor expression and mGlu1/5 receptor-mediated polyphosphoinositide hydrolysis were also unchanged in the hippocampus of AS mice. In contrast, AS mice showed a reduced expression of the short Homer protein isoform Homer 1a, and an increased coupling of mGlu5 receptors to Homer 1b/c proteins in the hippocampus. These findings support the link between Homer proteins and monogenic autism, and lay the groundwork for the use of mGlu5 receptor antagonists in AS.


Asunto(s)
Síndrome de Angelman/genética , Síndrome de Angelman/patología , Proteínas Portadoras/metabolismo , Hipocampo/fisiopatología , Depresión Sináptica a Largo Plazo/fisiología , Receptor del Glutamato Metabotropico 5/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Hemicigoto , Hipocampo/patología , Proteínas de Andamiaje Homer , Inmunosupresores/farmacología , Técnicas In Vitro , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sirolimus/farmacología
7.
Neuropharmacology ; 66: 339-47, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22709946

RESUMEN

Alterations of the glutamatergic system have been implicated in the pathophysiology and treatment of major depression. In order to investigate the expression and function of mGlu5 receptors in an animal model for treatment-resistant depression we used rats bred for congenital learned helplessness (cLH) and the control strain, bred for resistance against inescapable stress, congenitally. not learned helpless rats (cNLH). Western blot analysis showed an increased expression of mGlu5 (but not mGlu1a) receptors in the hippocampus of cLH rats, as compared with control cNLH rats. We also examined mGlu1/5 receptor signaling by in vivo measurement of DHPG-stimulated polyphosphoinositides hydrolysis. Stimulation of (3)H-inositolmonophosphate formation induced by i.c.v. injection of DHPG was enhanced by about 50% in the hippocampus of cLH rats. Correspondingly, DHPG-induced long-term depression (LTD) at Schaffer collateral/CA1 pyramidal cell synapses was amplified in hippocampal slices of cLH rats, whereas LTD induced by low frequency stimulation of the Schaffer collaterals did not change. Moreover, these effects were associated with decreased basal dendritic spine density of CA1 pyramidal cell in cLH rats. These data raise the attractive possibility that changes in the expression and function of mGlu5 receptors in the hippocampus might underlie the changes in synaptic plasticity associated with the depressive-like phenotype of cLH rats. However, chronic treatment of cLH rats with MPEP did not reverse learned helplessness, indicating that the enhanced mGlu5 receptor function is not the only player in the behavioral phenotype of this genetic model of depression. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.


Asunto(s)
Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Desamparo Adquirido , Depresión Sináptica a Largo Plazo/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Sinapsis/fisiología , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/efectos de los fármacos , Espinas Dendríticas/ultraestructura , Estimulación Eléctrica/métodos , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Hidrólisis/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Fosfatos de Fosfatidilinositol/metabolismo , Células Piramidales/citología , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/biosíntesis , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
8.
Neuromolecular Med ; 14(4): 262-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22661254

RESUMEN

The insulin receptor (IR) is a protein tyrosine kinase playing a pivotal role in the regulation of peripheral glucose metabolism and energy homoeostasis. IRs are also abundantly distributed in the cerebral cortex and hippocampus, where they regulate synaptic activity required for learning and memory. As the major anabolic hormone in mammals, insulin stimulates protein synthesis partially through the activation of the PI3K/Akt/mTOR pathway, playing fundamental roles in neuronal development, synaptic plasticity and memory. Here, by means of a multidisciplinary approach, we report that long-term synaptic plasticity and recognition memory are impaired in IR ß-subunit heterozygous mice. Since IR expression is diminished in type-2 diabetes as well as in Alzheimer's disease (AD) patients, these data may provide a mechanistic link between insulin resistance, impaired synaptic transmission and cognitive decline in humans with metabolic disorders.


Asunto(s)
Hipocampo/fisiopatología , Discapacidades para el Aprendizaje/genética , Potenciación a Largo Plazo/genética , Trastornos de la Memoria/genética , Proteínas del Tejido Nervioso/deficiencia , Receptor de Insulina/deficiencia , Reconocimiento en Psicología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/psicología , Femenino , Heterocigoto , Humanos , Resistencia a la Insulina , Discapacidades para el Aprendizaje/fisiopatología , Trastornos de la Memoria/fisiopatología , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Densidad Postsináptica/ultraestructura , Proteínas Proto-Oncogénicas c-akt/fisiología , Receptor de Insulina/genética , Receptor de Insulina/fisiología , Transducción de Señal/fisiología , Transmisión Sináptica/genética , Serina-Treonina Quinasas TOR/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA