Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Chem Commun (Camb) ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819786

RESUMEN

A folic acid-targeted polyurea (PURE) dendrimer was easily radiolabelled with Technetium-99m (99mTc-PUREG4-FA2) avoiding the use of additional ligands and bioconjugation chemistry. This straightforward strategy is enabled in PURE dendrimers due to their favourable surface terminal groups configuration, showing coordination capabilities and turning these biodendrimers into attractive platforms for nanoradiotheranostics.

2.
Membranes (Basel) ; 12(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36135845

RESUMEN

The production of medical devices follows strict guidelines where bio- and hemocompatibility, mechanical strength, and tear resistance are important features. Segmented polyurethanes (PUs) are an important class of polymers that fulfill many of these requirements, thus justifying the investigation of novel derivatives with enhanced properties, such as modulated carbon dioxide and oxygen permeability. In this work, three segmented polyurethane-based membranes, containing blocks of hard segments (HSs) dispersed in a matrix of soft segment (SS) blocks, were prepared by reacting a PU prepolymer (PUR) with tris(hydroxymethyl)aminomethane (TRIS), Congo red (CR) and methyl-ß-cyclodextrin (MBCD), rendering PU/TRIS, PU/CR and PU/MBCD membranes. The pure (control) PU membrane exhibited the highest degree of phase segregation between HSs and SSs followed by PU/TRIS and PU/MBCD membranes, and the PU/CR membrane displayed the highest degree of mixing. Pure PU and PU/CR membranes exhibited the highest and lowest values of Young's modulus, tangent moduli and ultimate tensile strength, respectively, suggesting that the introduction of CR increases molecular mobility, thus reducing stiffness. The CO2 permeability was highest for the PU/CR membrane, 347 Barrer, and lowest for the pure PU membrane, 278 Barrer, suggesting that a higher degree of mixing between HSs and SSs leads to higher CO2 permeation rates. The permeability of O2 was similar for all membranes, but ca. 10-fold lower than the CO2 permeability.

3.
Front Oncol ; 11: 656229, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34041026

RESUMEN

The activation of endothelial cells (ECs) is a crucial step on the road map of tumor angiogenesis and expanding evidence indicates that a pro-oxidant tumor microenvironment, conditioned by cancer metabolic rewiring, is a relevant controller of this process. Herein, we investigated the contribution of oxidative stress-induced ferroptosis to ECs activation. Moreover, we also addressed the anti-angiogenic effect of Propranolol. We observed that a ferroptosis-like mechanism, induced by xCT inhibition with Erastin, at a non-lethal level, promoted features of ECs activation, such as proliferation, migration and vessel-like structures formation, concomitantly with the depletion of reduced glutathione (GSH) and increased levels of oxidative stress and lipid peroxides. Additionally, this ferroptosis-like mechanism promoted vascular endothelial cadherin (VE-cadherin) junctional gaps and potentiated cancer cell adhesion to ECs and transendothelial migration. Propranolol was able to revert Erastin-dependent activation of ECs and increased levels of hydrogen sulfide (H2S) underlie the mechanism of action of Propranolol. Furthermore, we tested a dual-effect therapy by promoting ECs stability with Propranolol and boosting oxidative stress to induce cancer cell death with a nanoformulation comprising selenium-containing chrysin (SeChry) encapsulated in a fourth generation polyurea dendrimer (SeChry@PUREG4). Our data showed that novel developments in cancer treatment may rely on multi-targeting strategies focusing on nanoformulations for a safer induction of cancer cell death, taking advantage of tumor vasculature stabilization.

4.
Antioxidants (Basel) ; 9(2)2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32028640

RESUMEN

: Ovarian cancer is a highly lethal disease, mainly due to chemoresistance. Our previous studies on metabolic remodeling in ovarian cancer have supported that the reliance on glutathione (GSH) bioavailability is a main adaptive metabolic mechanism, also accounting for chemoresistance to conventional therapy based on platinum salts. In this study, we tested the effects of the in vitro inhibition of GSH synthesis on the restoration of ovarian cancer cells sensitivity to carboplatin. GSH synthesis was inhibited by exposing cells to l-buthionine sulfoximine (l-BSO), an inhibitor of -glutamylcysteine ligase (GCL). Given the systemic toxicity of l-BSO, we developed a new formulation using polyurea (PURE) dendrimers nanoparticles (l-BSO@PUREG4-FA2), targeting l-BSO delivery in a folate functionalized nanoparticle.

5.
Nutrients ; 11(10)2019 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-31635026

RESUMEN

Ovarian cancer is the main cause of death from gynecological cancer, with its poor prognosis mainly related to late diagnosis and chemoresistance (acquired or intrinsic) to conventional alkylating and reactive oxygen species (ROS)-generating drugs. We and others reported that the availability of cysteine and glutathione (GSH) impacts the mechanisms of resistance to carboplatin in ovarian cancer. Different players in cysteine metabolism can be crucial in chemoresistance, such as the cystine/glutamate antiporter system Xc (xCT) and the H2S-synthesizing enzyme cystathionine ß-synthase (CBS) in the pathway of cysteine catabolism. We hypothesized that, by disrupting cysteine metabolic flux, chemoresistance would be reverted. Since the xCT transporter is also able to take up selenium, we used selenium-containing chrysin (SeChry) as a plausible competitive inhibitor of xCT. For that, we tested the effects of SeChry on three different ovarian cancer cell lines (ES2, OVCAR3, and OVCAR8) and in two non-malignant cell lines (HaCaT and HK2). Results showed that, in addition to being highly cytotoxic, SeChry does not affect the uptake of cysteine, although it increases GSH depletion, indicating that SeChry might induce oxidative stress. However, enzymatic assays revealed an inhibitory effect of SeChry toward CBS, thus preventing production of the antioxidant H2S. Notably, our data showed that SeChry and folate-targeted polyurea dendrimer generation four (SeChry@PUREG4-FA) nanoparticles increased the specificity for SeChry delivery to ovarian cancer cells, reducing significantly the toxicity against non-malignant cells. Collectively, our data support SeChry@PUREG4-FA nanoparticles as a targeted strategy to improve ovarian cancer treatment, where GSH depletion and CBS inhibition underlie SeChry cytotoxicity.


Asunto(s)
Cistationina betasintasa/metabolismo , Flavonoides/uso terapéutico , Glutatión/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Polímeros/uso terapéutico , Selenio/uso terapéutico , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dendrímeros , Femenino , Flavonoides/administración & dosificación , Flavonoides/química , Humanos , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Polímeros/administración & dosificación , Polímeros/química , Selenio/administración & dosificación , Selenio/química
6.
Molecules ; 24(17)2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461931

RESUMEN

l-Buthionine sulfoximine (l-BSO) is an adjuvant drug that is reported to increase the sensitivity of cancer cells to neoplastic agents. Dendrimers are exceptional drug delivery systems and l-BSO nanoformulations are envisaged as potential chemotherapeutics. The absorption of l-BSO at a low wavelength limits its detection by conventional analytical tools. A simple and sensitive method for l-BSO detection and quantification is now reported. In this study, l-BSO was encapsulated in a folate-targeted generation four polyurea dendrimer (PUREG4-FA2) and its release profile was followed for 24 h at pH 7.4 and 37 °C. The protocol uses in situ l-BSO derivatization, by the formation of a catechol-derived orto-quinone, followed by visible detection of the derivative at 503 nm. The structure of the studied l-BSO derivative was assessed by NMR spectroscopy.


Asunto(s)
Butionina Sulfoximina/análisis , Polímeros/química , Dendrímeros , Espectroscopía de Resonancia Magnética , Estructura Molecular , Nanopartículas
7.
ChemistryOpen ; 7(10): 772-779, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30338202

RESUMEN

POxylated polyurea dendrimer (PUREG4OOx48)-based nanoparticles were loaded with paclitaxel (PTX) and doxorubicin (DOX) and micronized with chitosan (CHT) by using supercritical CO2-assisted spray drying (SASD). Respirable, biocompatible, and biodegradable dry powder formulations (DPFs) were produced to effectively transport and deliver the chemotherapeutics with a controlled rate to the deep lung. In vitro studies performed with the use of the lung adenocarcinoma cell line showed that DOX@PUREG4OOx48 nanoparticles were much more cytotoxic than the free drug. Additionally, the DPFs did not show higher cytotoxicity than the respective nanoparticles, and DOX-DPFs showed a higher chemotherapeutic effect than PTX formulations in adenocarcinoma cells.

8.
Macromol Biosci ; 15(8): 1045-51, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25967350

RESUMEN

The design and preparation of highly efficient drug delivery platforms using green methodologies is at the forefront of nanotherapeutics research. POxylated polyurea dendrimers are efficiently synthesized using a supercritical-assisted polymerization in carbon dioxide. These fluorescent, pH-responsive and water-soluble core-shell smart nanocarriers show low toxicity in terms of cell viability and absence of glutathione depletion, two of the major side effect limitations of current vectors. The materials are also found to act as good transfection agents, through a mechanism involving an endosomal pathway, being able to reduce 100-fold the IC50 of paclitaxel.


Asunto(s)
Dendrímeros/química , Sistemas de Liberación de Medicamentos , Nanomedicina , Polímeros/química , Dióxido de Carbono/química , Supervivencia Celular/efectos de los fármacos , Dendrímeros/síntesis química , Dendrímeros/farmacología , Endosomas/efectos de los fármacos , Glutatión/química , Glutatión/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Concentración 50 Inhibidora , Nanopartículas/química , Paclitaxel/química , Paclitaxel/farmacología , Polímeros/síntesis química , Polímeros/farmacología , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA