Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Phytopathology ; 114(5): 971-981, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38376984

RESUMEN

Nodule-specific cysteine-rich (NCR) peptides, encoded in the genome of the Mediterranean legume Medicago truncatula (barrelclover), are known to regulate plant-microbe interactions. A subset of computationally derived 20-mer peptide fragments from 182 NCR peptides was synthesized to identify those with activity against the unculturable vascular pathogen associated with citrus greening disease, 'Candidatus Liberibacter asiaticus' (CLas). Grounded in a design of experiments framework, we evaluated the peptides in a screening pipeline involving three distinct assays: a bacterial culture assay with Liberibacter crescens, a CLas-infected excised citrus leaf assay, and an assay to evaluate effects on bacterial acquisition by the nymphal stage of hemipteran vector Diaphorina citri. A subset of the 20-mer NCR peptide fragments inhibits both CLas growth in citrus leaves and CLas acquisition by D. citri. Two peptides induced higher levels of D. citri mortality. These findings reveal 20-mer NCR peptides as a new class of plant-derived biopesticide molecules to control citrus greening disease.


Asunto(s)
Citrus , Medicago truncatula , Péptidos , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Citrus/microbiología , Péptidos/química , Péptidos/metabolismo , Medicago truncatula/microbiología , Cisteína , Hemípteros/microbiología , Agentes de Control Biológico , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Liberibacter/genética , Animales , Rhizobiaceae/genética
2.
Front Bioeng Biotechnol ; 10: 1045337, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36619377

RESUMEN

Nanobodies® (VHH antibodies), are small peptides that represent the antigen binding domain, VHH of unique single domain antibodies (heavy chain only antibodies, HcAb) derived from camelids. Here, we demonstrate production of VHH nanobodies against the SARS-CoV-2 spike proteins in the solanaceous plant Nicotiana benthamiana through transient expression and their subsequent detection verified through western blot. We demonstrate that these nanobodies competitively inhibit binding between the SARS-CoV-2 spike protein receptor binding domain and its human receptor protein, angiotensin converting enzyme 2. There has been significant interest and a number of publications on the use of plants as biofactories and even some reports of producing nanobodies in plants. Our data demonstrate that functional nanobodies blocking a process necessary to initiate SARS-CoV-2 infection into mammalian cells can be produced in plants. This opens the alternative of using plants in a scheme to rapidly respond to therapeutic needs for emerging pathogens in human medicine and agriculture.

3.
Front Plant Sci ; 9: 113, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29467782

RESUMEN

Huanglongbing (HLB), a destructive plant bacterial disease, severely impedes worldwide citrus production. HLB is associated with a phloem-limited α-proteobacterium, Candidatus Liberibacter asiaticus (Las). Las infection causes yellow shoots and blotchy mottle on leaves and is associated with excessive starch accumulation. However, the mechanisms underlying the starch accumulation remain unknown. We previously showed that the Las5315mp effector induced callose deposition and cell death in Nicotiana benthamiana. In this study, we demonstrated that Las can experimentally infect N. benthamiana via dodder transmission. Furthermore, we revealed another key function of the Las5315 effector by demonstrating that transient expression of the truncated form of the effector, LasΔ5315, induced excessive starch accumulation by 6 fold after 8 dpi in N. benthamiana after removal of the chloroplast transit peptide from the Las5315mp. The induction mechanisms of LasΔ5315 in N. benthamiana were attributed to the up-regulation of ADP-glucose pyrophosphorylase, granule-bound starch synthase, soluble starch synthase, and starch branching enzyme for increasing starch production, and to the significant down-regulation of the starch degradation enzymes: alpha-glucosidase, alpha-amylase, and glycosyl hydrolase for decreasing starch degradation. This is the first report that Las can infect the model plant N. benthamiana. Using this model plant, we demonstrated that the LasΔ5315 effector caused the most prominent HLB symptoms, starch accumulation and chlorosis as Las infection in N. benthamiana. Altogether the Las 5315 effector is critical for Las pathogenesis, and therefore, an important target for interference.

4.
Hortic Res ; 4: 17040, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-35211319

RESUMEN

Candidatus Liberibacter asiaticus (Las) is a fastidious, phloem-restricted pathogen with a significantly reduced genome, and attacks all citrus species with no immune cultivars documented to date. Like other plant bacterial pathogens, Las deploys effector proteins into the organelles of plant cells, such as mitochondria and chloroplasts to manipulate host immunity and physiology. These organelles are responsible for the synthesis of adenosine triphosphate (ATP) and have a critical role in plant immune signaling during hydrogen peroxide (H2O2) production. In this study, we investigated H2O2 and ATP accumulation in relation to citrus huanglongbing (HLB) in addition to revealing the expression profiles of genes critical for the production and detoxification of H2O2 and ATP synthesis. We also found that as ATP and H2O2 concentrations increased in the leaf, so did the severity of the HLB symptoms, a trend that remained consistent among the four different citrus varieties tested. Furthermore, the upregulation of ATP synthase, a key enzyme for energy conversion, may contribute to the accumulation of ATP in infected tissues, whereas downregulation of the H2O2 detoxification system may cause oxidative damage to plant macromolecules and cell structures. This may explain the cause of some of the HLB symptoms such as chlorosis or leaf discoloration. The findings in this study highlight important molecular and physiological mechanisms involved in the host plants' response to Las infection and provide new targets for interrupting the disease cycle.

5.
Front Plant Sci ; 7: 982, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27458468

RESUMEN

Candidatus Liberibacter asiaticus "Las" is a phloem-limited bacterial plant pathogen, and the most prevalent species of Liberibacter associated with citrus huanglongbing (HLB), a devastating disease of citrus worldwide. Although, the complete sequence of the Las genome provides the basis for studying functional genomics of Las and molecular mechanisms of Las-plant interactions, the functional characterization of Las effectors remains a slow process since remains to be cultured. Like other plant pathogens, Las may deliver effector proteins into host cells and modulate a variety of host cellular functions for their infection progression. In this study, we identified 16 putative Las effectors via bioinformatics, and transiently expressed them in Nicotiana benthamiana. Diverse subcellular localization with different shapes and aggregation patterns of the effector candidates were revealed by UV- microscopy after transient expression in leaf tissue. Intriguingly, one of the 16 candidates, Las5315mp (mature protein), was localized in the chloroplast and induced cell death at 3 days post inoculation (dpi) in N. benthamiana. Moreover, Las5315mp induced strong callose deposition in plant cells. This study provides new insights into the localizations and potential roles of these Las effectors in planta.

6.
Mol Plant Microbe Interact ; 29(2): 132-42, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26554734

RESUMEN

Overexpression of plant pattern-recognition receptors by genetic engineering provides a novel approach to enhance plant immunity and broad-spectrum disease resistance. Citrus canker disease associated with Xanthomonas citri is one of the most important diseases damaging citrus production worldwide. In this study, we cloned the FLS2 gene from Nicotiana benthamiana cDNA and inserted it into the binary vector pBinPlus/ARS to transform Hamlin sweet orange and Carrizo citrange. Transgene presence was confirmed by polymerase chain reaction (PCR) and gene expression of NbFLS2 was compared by reverse transcription quantitative PCR. Reactive oxygen species (ROS) production in response to flg22Xcc was detected in transgenic Hamlin but not in nontransformed controls. Low or no ROS production was detected from nontransformed Hamlin seedlings challenged with flg22Xcc. Transgenic plants highly expressing NbFLS2 were selected and were evaluated for resistance to canker incited by X. citri 3213. Our results showed that the integration and expression of the NbFLS2 gene in citrus can increase canker resistance and defense-associated gene expression when challenged with X. citri. These results suggest that canker-susceptible Citrus genotypes lack strong basal defense induced by X. citri flagellin and the resistance of these genotypes can be enhanced by transgenic expression of the flagellin receptor from a resistant species.


Asunto(s)
Citrus/genética , Nicotiana/metabolismo , Enfermedades de las Plantas/microbiología , Xanthomonas/fisiología , Citrus/microbiología , Regulación de la Expresión Génica de las Plantas/fisiología , Predisposición Genética a la Enfermedad , Filogenia , Enfermedades de las Plantas/genética , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
7.
BMC Plant Biol ; 14: 211, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25091183

RESUMEN

BACKGROUND: 'Candidatus Liberibacter solanacearum' (Lso) is a phloem-limited alphaproteobacterium associated with the devastating zebra chip disease of potato (Solanum tuberosum). Like other members of Liberibacter, Lso-ZC1 encodes a flagellin domain-containing protein (Fla Lso ) with a conserved 22 amino-acid peptide (flg22 Lso ). To understand the innate immune responses triggered by this unculturable intracellular bacterium, we studied the pathogen-associated molecular patterns (PAMPs) that triggered immunity in Nicotiana benthamiana, using the flg22 Lso peptide and the full length fla Lso gene. RESULTS: Our results showed that the expression of fla Lso via Agrobacterium-mediated transient expression induced a slow necrotic cell death in the inoculated leaves of N. benthamiana, which was coupled with a burst of reactive oxygen species (ROS) production. Moreover, the expression of several representative genes involved in innate immunity was transiently up-regulated by the flg22 Lso in N. benthamiana. The Fla Lso , however, induced stronger up-regulation of these representative genes compared to the flg22 Lso , especially that of flagellin receptor FLAGELLIN SENSING2 (FLS2) and respiratory burst oxidase (RbohB) in N. benthamiana. Although neither cell death nor ROS were induced by the synthetic flg22 Lso , a weak callose deposition was observed in infiltrated leaves of tobacco, tomato, and potato plants. CONCLUSION: The flagellin of Lso and its functional domain, flg22 Lso share characteristics of pathogen-associated molecular patterns, and trigger unique innate immune responses in N. benthamiana. Slow and weak activation of the innate immune response in host plants by the flagellin of Lso may reflect the nature of its intracellular life cycle. Our findings provide new insights into the role of the Lso flagellin in the development of potato zebra chip disease and potential application in breeding for resistance.


Asunto(s)
Flagelina/inmunología , Inmunidad Innata , Inmunidad de la Planta , Solanaceae/inmunología , Muerte Celular , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Solanaceae/metabolismo
8.
Mol Plant Microbe Interact ; 26(1): 130-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23035913

RESUMEN

Microbial pathogens and pests produce effectors to modulate host processes. Aphids are phloem-feeding insects, which introduce effectors via saliva into plant cells. However, it is not known if aphid effectors have adapted to modulate processes in specific plant species. Myzus persicae is a polyphagous insect that colonizes Arabidopsis thaliana and Nicotiana benthamiana, while the pea aphid Acyrthosiphon pisum specializes on colonizing plant species of the family Fabaceae. We found that M. persicae reproduction increased on transgenic Arabidopsis, producing the M. persicae effectors C002, PIntO1 (Mp1), and PIntO2 (Mp2), whereas reproduction of M. persicae did not increase on Arabidopsis producing the A. pisum orthologs of these three proteins. Plant-mediated RNA interference experiments showed that c002- and PIntO2-silenced M. persicae produce less progeny on Arabidopsis and N. benthamiana than nonsilenced aphids. Orthologs of c002, PIntO1, and PIntO2 were identified in multiple aphid species with dissimilar plant host ranges. We revealed high nonsynonymous versus synonymous nucleotide substitution rates within the effector orthologs, indicating that the effectors are fast evolving. Application of maximum likelihood methods identified specific sites with high probabilities of being under positive selection in PIntO1, whereas those of C002 and PIntO2 may be located in alignment gaps. In support of the latter, a M. persicae c002 mutant without the NDNQGEE repeat region, which overlaps with an alignment gap in C002, does not promote M. persicae colonization on Arabidopsis. Taken together, these results provide evidence that aphid effectors are under positive selection to promote aphid colonization on specific plant species.


Asunto(s)
Áfidos/genética , Arabidopsis/parasitología , Especificidad del Huésped/genética , Proteínas de Insectos/genética , Polimorfismo Genético , Secuencia de Aminoácidos , Animales , Áfidos/fisiología , Arabidopsis/genética , Conducta Alimentaria , Fertilidad , Silenciador del Gen , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Datos de Secuencia Molecular , Hojas de la Planta , Plantas Modificadas Genéticamente , Señales de Clasificación de Proteína , Interferencia de ARN , Reproducción , Alineación de Secuencia , Especificidad de la Especie , Análisis de Supervivencia , Nicotiana/parasitología , Transgenes
9.
PLoS One ; 6(10): e25709, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21998682

RESUMEN

BACKGROUND: RNA interference (RNAi) is a valuable reverse genetics tool to study gene function in various organisms, including hemipteran insects such as aphids. Previous work has shown that RNAi-mediated knockdown of pea aphid (Acyrthosiphon pisum) genes can be achieved through direct injection of double-stranded RNA (dsRNA) or small-interfering RNAs (siRNA) into the pea aphid hemolymph or by feeding these insects on artificial diets containing the small RNAs. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have developed the plant-mediated RNAi technology for aphids to allow for gene silencing in the aphid natural environment and minimize handling of these insects during experiments. The green peach aphid M. persicae was selected because it has a broad plant host range that includes the model plants Nicotiana benthamiana and Arabidopsis thaliana for which transgenic materials can relatively quickly be generated. We targeted M. persicae Rack1, which is predominantly expressed in the gut, and M. persicae C002 (MpC002), which is predominantly expressed in the salivary glands. The aphids were fed on N. benthamiana leaf disks transiently producing dsRNA corresponding to these genes and on A. thaliana plants stably producing the dsRNAs. MpC002 and Rack-1 expression were knocked down by up to 60% on transgenic N. benthamiana and A. thaliana. Moreover, silenced M. persicae produced less progeny consistent with these genes having essential functions. CONCLUSIONS/SIGNIFICANCE: Similar levels of gene silencing were achieved in our plant-mediated RNAi approach and published silencing methods for aphids. Furthermore, the N. benthamiana leaf disk assay can be developed into a screen to assess which genes are essential for aphid survival on plants. Our results also demonstrate the feasibility of the plant-mediated RNAi approach for aphid control.


Asunto(s)
Alimentación Animal , Áfidos/genética , Arabidopsis/genética , Técnicas de Silenciamiento del Gen/métodos , Nicotiana/genética , Interferencia de ARN , ARN Bicatenario/genética , Animales , Áfidos/fisiología , Estudios de Factibilidad , Fertilidad/genética , Genes de Insecto/genética , Hojas de la Planta/genética , Plantas Modificadas Genéticamente , Transcriptoma
10.
PLoS Genet ; 6(11): e1001216, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21124944

RESUMEN

Aphids are amongst the most devastating sap-feeding insects of plants. Like most plant parasites, aphids require intimate associations with their host plants to gain access to nutrients. Aphid feeding induces responses such as clogging of phloem sieve elements and callose formation, which are suppressed by unknown molecules, probably proteins, in aphid saliva. Therefore, it is likely that aphids, like plant pathogens, deliver proteins (effectors) inside their hosts to modulate host cell processes, suppress plant defenses, and promote infestation. We exploited publicly available aphid salivary gland expressed sequence tags (ESTs) to apply a functional genomics approach for identification of candidate effectors from Myzus persicae (green peach aphid), based on common features of plant pathogen effectors. A total of 48 effector candidates were identified, cloned, and subjected to transient overexpression in Nicotiana benthamiana to assay for elicitation of a phenotype, suppression of the Pathogen-Associated Molecular Pattern (PAMP)-mediated oxidative burst, and effects on aphid reproductive performance. We identified one candidate effector, Mp10, which specifically induced chlorosis and local cell death in N. benthamiana and conferred avirulence to recombinant Potato virus X (PVX) expressing Mp10, PVX-Mp10, in N. tabacum, indicating that this protein may trigger plant defenses. The ubiquitin-ligase associated protein SGT1 was required for the Mp10-mediated chlorosis response in N. benthamiana. Mp10 also suppressed the oxidative burst induced by flg22, but not by chitin. Aphid fecundity assays revealed that in planta overexpression of Mp10 and Mp42 reduced aphid fecundity, whereas another effector candidate, MpC002, enhanced aphid fecundity. Thus, these results suggest that, although Mp10 suppresses flg22-triggered immunity, it triggers a defense response, resulting in an overall decrease in aphid performance in the fecundity assays. Overall, we identified aphid salivary proteins that share features with plant pathogen effectors and therefore may function as aphid effectors by perturbing host cellular processes.


Asunto(s)
Áfidos/genética , Genómica/métodos , Proteínas de Insectos/genética , Prunus/parasitología , Animales , Áfidos/efectos de los fármacos , Quitina/farmacología , Proteínas de Insectos/metabolismo , Enfermedades de las Plantas/parasitología , Prunus/efectos de los fármacos , Estallido Respiratorio/efectos de los fármacos , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Nicotiana/efectos de los fármacos , Nicotiana/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA