Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Neurosci ; 43(50): 8744-8755, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37857485

RESUMEN

Mammalian target of rapamycin (mTOR) pathway has emerged as a key molecular mechanism underlying memory processes. Although mTOR inhibition is known to block memory processes, it remains elusive whether and how an enhancement of mTOR signaling may improve memory processes. Here we found in male mice that the administration of VO-OHpic, an inhibitor of the phosphatase and tensin homolog (PTEN) that negatively modulates AKT-mTOR pathway, enhanced auditory fear memory for days and weeks, while it left short-term memory unchanged. Memory enhancement was associated with a long-lasting increase in immature-type dendritic spines of pyramidal neurons into the auditory cortex. The persistence of spine remodeling over time arose by the interplay between PTEN inhibition and memory processes, as VO-OHpic induced only a transient immature spine growth in the somatosensory cortex, a region not involved in long-term auditory memory. Both the potentiation of fear memories and increase in immature spines were hampered by rapamycin, a selective inhibitor of mTORC1. These data revealed that memory can be potentiated over time by the administration of a selective PTEN inhibitor. In addition to disclosing new information on the cellular mechanisms underlying long-term memory maintenance, our study provides new insights on the molecular processes that aid enhancing memories over time.SIGNIFICANCE STATEMENT The neuronal mechanisms that may help improve the maintenance of long-term memories are still elusive. The inhibition of mammalian-target of rapamycin (mTOR) signaling shows that this pathway plays a crucial role in synaptic plasticity and memory formation. However, whether its activation may strengthen long-term memory storage is unclear. We assessed the consequences of positive modulation of AKT-mTOR pathway obtained by VO-OHpic administration, a phosphatase and tensin homolog inhibitor, on memory retention and underlying synaptic modifications. We found that mTOR activation greatly enhanced memory maintenance for weeks by producing a long-lasting increase of immature-type dendritic spines in pyramidal neurons of the auditory cortex. These results offer new insights on the cellular and molecular mechanisms that can aid enhancing memories over time.


Asunto(s)
Corteza Auditiva , Proteínas Proto-Oncogénicas c-akt , Masculino , Ratones , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Corteza Auditiva/metabolismo , Espinas Dendríticas/metabolismo , Tensinas/metabolismo , Memoria a Largo Plazo/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Memoria a Corto Plazo/fisiología , Sirolimus/farmacología , Miedo/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Mamíferos
2.
Heart Fail Rev ; 27(5): 1605-1616, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34618287

RESUMEN

Impaired cardiac energy metabolism has been proposed as a mechanism common to different heart failure aetiologies. The energy-depletion hypothesis was pursued by several researchers, and is still a topic of considerable interest. Unlike most organs, in the heart, the creatine kinase system represents a major component of the metabolic machinery, as it functions as an energy shuttle between mitochondria and cytosol. In heart failure, the decrease in creatine level anticipates the reduction in adenosine triphosphate, and the degree of myocardial phosphocreatine/adenosine triphosphate ratio reduction correlates with disease severity, contractile dysfunction, and myocardial structural remodelling. However, it remains to be elucidated whether an impairment of phosphocreatine buffer activity contributes to the pathophysiology of heart failure and whether correcting this energy deficit might prove beneficial. The effects of creatine deficiency and the potential utility of creatine supplementation have been investigated in experimental and clinical models, showing controversial findings. The goal of this article is to provide a comprehensive overview on the role of creatine in cardiac energy metabolism, the assessment and clinical value of creatine deficiency in heart failure, and the possible options for the specific metabolic therapy.


Asunto(s)
Creatina , Insuficiencia Cardíaca , Adenosina Trifosfato/metabolismo , Creatina/metabolismo , Creatina/farmacología , Metabolismo Energético/fisiología , Humanos , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Fosfocreatina/metabolismo
3.
Genes (Basel) ; 12(8)2021 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-34440297

RESUMEN

Creatine (Cr) Transporter Deficiency (CTD) is an X-linked metabolic disorder, mostly caused by missense mutations in the SLC6A8 gene and presenting with intellectual disability, autistic behavior, and epilepsy. There is no effective treatment for CTD and patients need lifelong assistance. Thus, the research of novel intervention strategies is a major scientific challenge. Animal models are an excellent tool to dissect the disease pathogenetic mechanisms and drive the preclinical development of therapeutics. This review illustrates the current knowledge about Cr metabolism and CTD clinical aspects, with a focus on mainstay diagnostic and therapeutic options. Then, we discuss the rodent models of CTD characterized in the last decade, comparing the phenotypes expressed within clinically relevant domains and the timeline of symptom development. This analysis highlights that animals with the ubiquitous deletion/mutation of SLC6A8 genes well recapitulate the early onset and the complex pathological phenotype of the human condition. Thus, they should represent the preferred model for preclinical efficacy studies. On the other hand, brain- and cell-specific conditional mutants are ideal for understanding the basis of CTD at a cellular and molecular level. Finally, we explain how CTD models might provide novel insight about the pathogenesis of other disorders, including cancer.


Asunto(s)
Encefalopatías Metabólicas Innatas/patología , Encefalopatías Metabólicas Innatas/terapia , Sistema Nervioso Central/patología , Creatina/deficiencia , Modelos Animales de Enfermedad , Discapacidad Intelectual Ligada al Cromosoma X/patología , Discapacidad Intelectual Ligada al Cromosoma X/terapia , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/deficiencia , Animales , Biomarcadores/metabolismo , Encefalopatías Metabólicas Innatas/metabolismo , Creatina/metabolismo , Humanos , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Ratones , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Ratas
4.
Mol Neurobiol ; 56(9): 5987-5997, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30706367

RESUMEN

Perineuronal nets (PNNs) are condensed structures in the extracellular matrix that mainly surround GABA-ergic parvalbumin-positive interneurons in the adult brain. Previous studies revealed a parallel between PNN formation and the closure of the critical period. Moreover, ocular dominance plasticity is enhanced in response to PNN manipulations in adult animals. However, the mechanisms through which perineuronal nets modulate plasticity are still poorly understood. Recent work indicated that perineuronal nets may convey molecular signals by binding and storing proteins with important roles in cellular communication. Here we report that semaphorin3A (Sema3A), a chemorepulsive axon guidance cue known to bind to important perineuronal net components, is necessary to dampen ocular dominance plasticity in adult rats. First, we showed that the accumulation of Sema3A in PNNs in the visual cortex correlates with critical period closure, following the same time course of perineuronal nets maturation. Second, the accumulation of Sema3A in perineuronal nets was significantly reduced by rearing animals in the dark in the absence of any visual experience. Finally, we developed and characterized a tool to interfere with Sema3A signaling by means of AAV-mediated expression of receptor bodies, soluble proteins formed by the extracellular domain of the endogenous Sema3A receptor (neuropilin1) fused to a human IgG Fc fragment. By using this tool to antagonize Sema3A signaling in the adult rat visual cortex, we found that the specific inhibition of Sema3A promoted ocular dominance plasticity. Thus, Sema3A accumulates in perineuronal nets in an experience-dependent manner and its presence in the mature visual cortex inhibits plasticity.


Asunto(s)
Envejecimiento/fisiología , Predominio Ocular/fisiología , Semaforina-3A/antagonistas & inhibidores , Corteza Visual/fisiología , Animales , Conos de Crecimiento/metabolismo , Células HEK293 , Humanos , Neuronas/metabolismo , Neuropilinas/metabolismo , Agregado de Proteínas , Ratas , Semaforina-3A/metabolismo , Solubilidad , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
Exp Neurol ; 265: 48-58, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25483398

RESUMEN

Alzheimer's disease is the most prevalent tauopathy and cause of dementia. We investigate the hypothesis that reactivation of plasticity can restore function in the presence of neuronal damage resulting from tauopathy. We investigated two models with tau hyperphosphorylation, aggregation and neurodegeneration: a transgenic mouse model in which the mutant P301S tau is expressed in neurons (Tg P301S), and a model in which an adeno-associated virus expressing P301S tau (AAV-P301S) was injected in the perirhinal cortex, a region critical for object recognition (OR) memory. Both models show profound loss of OR memory despite only 15% neuronal loss in the Tg P301S and 26% in AAV-P301S-injected mice. Recordings from perirhinal cortex slices of 3month-old P301S transgenic mice showed a diminution in synaptic transmission following temporal stimulation. Chondroitinase ABC (ChABC) can reactivate plasticity and affect memory through actions on perineuronal nets. ChABC was injected into the perirhinal cortex and animals were tested for OR memory 1week later, demonstrating restoration of OR memory to normal levels. Synaptic transmission indicated by fEPSP amplitude was restored to control levels following ChABC treatment. ChABC did not affect the progression of neurodegenerative tauopathy. These findings suggest that increasing plasticity by manipulation of perineuronal nets offers a novel therapeutic approach to the treatment of memory loss in neurodegenerative disorders.


Asunto(s)
Corteza Cerebral/enzimología , Condroitina ABC Liasa/administración & dosificación , Memoria/fisiología , Red Nerviosa/enzimología , Plasticidad Neuronal/fisiología , Tauopatías/enzimología , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Humanos , Inyecciones Intraventriculares , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/patología , Plasticidad Neuronal/efectos de los fármacos , Técnicas de Cultivo de Órganos , Tauopatías/tratamiento farmacológico , Tauopatías/patología
6.
Mediators Inflamm ; 2014: 560120, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24757286

RESUMEN

Rett syndrome (RTT) is a pervasive neurodevelopmental disorder mainly linked to mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Respiratory dysfunction, historically credited to brainstem immaturity, represents a major challenge in RTT. Our aim was to characterize the relationships between pulmonary gas exchange abnormality (GEA), upper airway obstruction, and redox status in patients with typical RTT (n = 228) and to examine lung histology in a Mecp2-null mouse model of the disease. GEA was detectable in ~80% (184/228) of patients versus ~18% of healthy controls, with "high" (39.8%) and "low" (34.8%) patterns dominating over "mixed" (19.6%) and "simple mismatch" (5.9%) types. Increased plasma levels of non-protein-bound iron (NPBI), F2-isoprostanes (F2-IsoPs), intraerythrocyte NPBI (IE-NPBI), and reduced and oxidized glutathione (i.e., GSH and GSSG) were evidenced in RTT with consequently decreased GSH/GSSG ratios. Apnea frequency/severity was positively correlated with IE-NPBI, F2-IsoPs, and GSSG and negatively with GSH/GSSG ratio. A diffuse inflammatory infiltrate of the terminal bronchioles and alveoli was evidenced in half of the examined Mecp2-mutant mice, well fitting with the radiological findings previously observed in RTT patients. Our findings indicate that GEA is a key feature of RTT and that terminal bronchioles are a likely major target of the disease.


Asunto(s)
Inflamación/patología , Enfermedades Pulmonares/fisiopatología , Mutación , Síndrome de Rett/fisiopatología , Adolescente , Adulto , Animales , Antioxidantes/metabolismo , Niño , Preescolar , Modelos Animales de Enfermedad , Femenino , Glutatión/metabolismo , Humanos , Lactante , Pulmón/patología , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Intercambio Gaseoso Pulmonar , Síndrome de Rett/metabolismo , Adulto Joven
7.
Cell Mol Life Sci ; 71(1): 1-20, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23508806

RESUMEN

RNA interference has been envisaged as a powerful tool for molecular and clinical investigation with a great potential for clinical applications. In recent years, increased understanding of cancer biology and stem cell biology has dramatically accelerated the development of technology for cell and gene therapy in these areas. This paper is a review of the most recent report of innovative use of siRNA to benefit several central nervous system diseases. Furthermore, a description is made of innovative strategies of delivery into the brain by means of viral and non-viral vectors with high potential for translation into clinical use. Problems are also highlighted that might hamper the transition from bench to bed, analyzing the lack of reliable preclinical models with predictive validity and the lack of effective delivery systems, which are able to overcome biological barriers and specifically reach the brain site of action.


Asunto(s)
Enfermedades del Sistema Nervioso/terapia , ARN Interferente Pequeño/administración & dosificación , Barrera Hematoencefálica/metabolismo , Portadores de Fármacos/química , Vectores Genéticos/metabolismo , Humanos , Nanopartículas/química , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Interferencia de ARN , Investigación Biomédica Traslacional , Virus/genética
8.
Nanomedicine (Lond) ; 6(10): 1709-18, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22122583

RESUMEN

AIM: This work aims to exploit the 'antenna' properties of multiwalled carbon nanotubes (MWCNTs). They can be used to induce cell permeabilization in order to transfer drugs (normally impermeable to cell membranes) both in in vitro and in vivo models. MATERIAL & METHODS: The performance of the MWCNTs as receiver antenna was modeled by finite element modeling. Once the appropriate field has been identified, the antenna properties of MWCNTs were investigated in sequential experiments involving immortalized fibroblast cell line (drug model: doxorubicin chemotherapeutic agent) and living mice (drug model: bcl-2 antiapoptotic gene) following stereotactic injection in the cerebral motor cortex. RESULTS: Finite element modeling analysis predicts that our MWCNTs irradiated in the radiofrequency field resemble thin-wire dipole antennas. In vitro experiments confirmed that combination of MWCNTs and electromagnetic field treatment dramatically favors intracellular drug uptake and, most importantly, drug nuclear localization. Finally, the brain of each irradiated animal exhibits a significantly higher number of transfected cells compared with the appropriate controls. CONCLUSION: This wireless application has the potential for MWCNT-based intracellular drug delivery and electro-stimulation therapies.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de la radiación , Doxorrubicina/farmacocinética , Análisis de Elementos Finitos , Microondas , Nanotubos de Carbono/química , Plásmidos/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Sistemas de Liberación de Medicamentos , Campos Electromagnéticos , Genes bcl-2/genética , Humanos , Ratones , Células 3T3 NIH , Nanotecnología , Nanotubos de Carbono/toxicidad , Plásmidos/genética , Imagen de Lapso de Tiempo/métodos , Transfección
9.
PLoS Genet ; 7(6): e1002129, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21731499

RESUMEN

Familial hemiplegic migraine type 2 (FHM2) is an autosomal dominant form of migraine with aura that is caused by mutations of the α2-subunit of the Na,K-ATPase, an isoform almost exclusively expressed in astrocytes in the adult brain. We generated the first FHM2 knock-in mouse model carrying the human W887R mutation in the Atp1a2 orthologous gene. Homozygous Atp1a2(R887/R887) mutants died just after birth, while heterozygous Atp1a2(+/R887) mice showed no apparent clinical phenotype. The mutant α2 Na,K-ATPase protein was barely detectable in the brain of homozygous mutants and strongly reduced in the brain of heterozygous mutants, likely as a consequence of endoplasmic reticulum retention and subsequent proteasomal degradation, as we demonstrate in transfected cells. In vivo analysis of cortical spreading depression (CSD), the phenomenon underlying migraine aura, revealed a decreased induction threshold and an increased velocity of propagation in the heterozygous FHM2 mouse. Since several lines of evidence involve a specific role of the glial α2 Na,K pump in active reuptake of glutamate from the synaptic cleft, we hypothesize that CSD facilitation in the FHM2 mouse model is sustained by inefficient glutamate clearance by astrocytes and consequent increased cortical excitatory neurotransmission. The demonstration that FHM2 and FHM1 mutations share the ability to facilitate induction and propagation of CSD in mouse models further support the role of CSD as a key migraine trigger.


Asunto(s)
Depresión de Propagación Cortical/genética , Ácido Glutámico/metabolismo , Migraña con Aura/patología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Femenino , Técnicas de Sustitución del Gen , Células HeLa , Humanos , Masculino , Ratones , Ratones Transgénicos , Migraña con Aura/genética , Mutagénesis Insercional , Fenotipo , Transporte de Proteínas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , ATPasa Intercambiadora de Sodio-Potasio/genética , Transmisión Sináptica , Transfección
10.
Hum Mol Genet ; 20(6): 1182-96, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21212100

RESUMEN

Rett syndrome (RTT) is a neurodevelopmental disorder with no efficient treatment that is caused in the majority of cases by mutations in the gene methyl-CpG binding-protein 2 (MECP2). RTT becomes manifest after a period of apparently normal development and causes growth deceleration, severe psychomotor impairment and mental retardation. Effective animal models for RTT are available and show morphofunctional abnormalities of synaptic connectivity. However, the molecular consequences of MeCP2 disruption leading to neuronal and synaptic alterations are not known. Protein synthesis regulation via the mammalian target of the rapamycin (mTOR) pathway is crucial for synaptic organization, and its disruption is involved in a number of neurodevelopmental diseases. We investigated the phosphorylation of the ribosomal protein (rp) S6, whose activation is highly dependent from mTOR activity. Immunohistochemistry showed that rpS6 phosphorylation is severely affected in neurons across the cortical areas of Mecp2 mutants and that this alteration precedes the severe symptomatic phase of the disease. Moreover, we found a severe defect of the initiation of protein synthesis in the brain of presymptomatic Mecp2 mutant that was not restricted to a specific subset of transcripts. Finally, we provide evidence for a general dysfunction of the Akt/mTOR, but not extracellular-regulated kinase, signaling associated with the disease progression in mutant brains. Our results indicate that defects in the AKT/mTOR pathway are responsible for the altered translational control in Mecp2 mutant neurons and disclosed a novel putative biomarker of the pathological process. Importantly, this study provides a novel context of therapeutic interventions that can be designed to successfully restrain or ameliorate the development of RTT.


Asunto(s)
Regulación hacia Abajo , Proteína Oncogénica v-akt/metabolismo , Biosíntesis de Proteínas , Síndrome de Rett/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Proteína Oncogénica v-akt/genética , Síndrome de Rett/genética , Serina-Treonina Quinasas TOR/genética
11.
Biomaterials ; 31(25): 6555-66, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20537383

RESUMEN

Nanoparticles have an enormous potential for the development of applications in biomedicine such as gene or drug delivery. We developed and characterized NH(2) functionalized CdSe/ZnS quantum dot (QD)-doped SiO(2) nanoparticles (NPs) with both imaging and gene carrier capabilities. We show that QD-doped SiO(2) NPs are internalized by primary cortical neural cells without inducing cell death in vitro and in vivo. Moreover, the ability to bind, transport and release DNA into the cell allows GFP-plasmid transfection of NIH-3T3 and human neuroblastoma SH-SY5Y cell lines. QD-doped SiO(2) NPs properties make them a valuable tool for future nanomedicine application.


Asunto(s)
Nanopartículas/química , Neuronas/citología , Puntos Cuánticos , Dióxido de Silicio/química , Transfección , Animales , Apoptosis , Compuestos de Cadmio/química , Células Cultivadas , ADN/metabolismo , Ratones , Compuestos de Selenio/química , Dióxido de Silicio/metabolismo , Sulfuros/química , Compuestos de Zinc/química
12.
Methods Mol Biol ; 625: 67-83, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20422382

RESUMEN

The explosive growth of nanotechnology in the last years has led to dramatic innovations in pharmacology, and it is revolutioning the development of biologically active compounds. Carbon nanotubes (CNTs) are widely explored for biomedical applications such as intracellular transporters for (bio)molecules, and represent promising future tools for efficient and safe cell therapy. Due to their nanoscale dimensions, the ability to interact with cells, and their easy functionalization, CNTs are close-to-ideal vectors for an efficient and safe cell therapy, obviating the risks associated with the use of viral vectors. Notwithstanding, conflicting data concerning the biocompatibility of CNTs have been reported in the literature; while some studies point toward very low toxicity of CNTs both in vitro and in vivo, others reveal various toxic effects such as oxidative stress, DNA damage, and cell apoptosis. Thus, standardized methods and independent test systems are urgently needed to verify cytotoxicity data in this research field. In this chapter, we summarize the used methods and the achieved main results in our laboratories concerning multiwalled carbon nanotubes (MWCNTs) biocompatibility studies. The in vitro response of human neuroblastoma cell line and primary mouse neurons was investigated following the exposure to different samples of MWCNTs in order to evaluate their effects on cell viability, oxidative stress, and apoptosis. Moreover, in vivo neurocompatibility tests were carried out through injections in mouse brains.


Asunto(s)
Apoptosis/efectos de los fármacos , Materiales Biocompatibles/toxicidad , Encéfalo/efectos de los fármacos , Nanotubos de Carbono/toxicidad , Neuronas/efectos de los fármacos , Animales , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ensayo de Materiales , Ratones , Nanotubos de Carbono/química , Estrés Oxidativo/efectos de los fármacos , Relación Estructura-Actividad , Células Tumorales Cultivadas
13.
PLoS One ; 4(2): e4342, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19194492

RESUMEN

BACKGROUND: It is generally assumed that visual cortical cells homogeneously shift their ocular dominance (OD) in response to monocular deprivation (MD), however little experimental evidence directly supports this notion. By using immunohistochemistry for the activity-dependent markers c-Fos and Arc, coupled with staining for markers of inhibitory cortical sub-populations, we studied whether long-term MD initiated at P21 differentially affects visual response of inhibitory neurons in rat binocular primary visual cortex. METHODOLOGY/PRINCIPAL FINDINGS: The inhibitory markers GAD67, parvalbumin (PV), calbindin (CB) and calretinin (CR) were used. Visually activated Arc did not colocalize with PV and was discarded from further studies. MD decreased visually induced c-Fos activation in GAD67 and CR positive neurons. The CB population responded to MD with a decrease of CB expression, while PV cells did not show any effect of MD on c-Fos expression. The persistence of c-Fos expression induced by deprived eye stimulation in PV cells is not likely to be due to a particularly low threshold for activity-dependent c-Fos induction. Indeed, c-Fos induction by increasing concentrations of the GABAA antagonist picrotoxin in visual cortical slices was similar between PV cells and the other cortical neurons. CONCLUSION: These data indicate that PV cells are particularly refractory to MD, suggesting that different cortical subpopulation may show different response to MD.


Asunto(s)
Ojo/patología , Neuronas/metabolismo , Parvalbúminas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Corteza Visual/metabolismo , Corteza Visual/patología , Animales , Biomarcadores/metabolismo , Calbindina 2 , Ojo/efectos de los fármacos , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Picrotoxina/farmacología , Ratas , Ratas Long-Evans , Proteína G de Unión al Calcio S100/metabolismo , Factores de Tiempo , Corteza Visual/efectos de los fármacos
14.
J Neurosci ; 23(18): 7012-20, 2003 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-12904462

RESUMEN

Normal visual experience during postnatal development is necessary for the maturation of visual cortical circuits and acts through molecular mechanisms that are still poorly understood. Recently, it has been shown that ERK (extracellular signal-regulated kinase) 1/2, protein kinase A (PKA), and CREB (cAMP response element-binding protein) are crucial factors for experience-dependent development of the visual cortex, but very little is known about the role of visual experience in their activation. Here, we show that visual stimulation after a brief period of dark rearing caused a transient ERK activation in the visual cortex. Visually induced ERK activation occurred primarily in excitatory neurons of layers II-III and VI and was prevented by binocular lid suture. ERK phosphorylation was strongly reduced by cortical infusion with the cAMP-PKA inhibitor Rp-8-Cl-cAMPS, thus establishing a link between PKA and ERK activation. To analyze the downstream consequences of ERK and PKA signaling, we studied the action of visual stimulation on transcription of genes controlled by CREB in transgenic mice carrying the LacZ reporter gene under the control of the CRE (cAMP response element) promoter. Visual stimulation triggered a prolonged episode of CRE-mediated gene expression in the visual cortex that was suppressed by infusion with the ERK inhibitor U0126. Cortical administration of Rp-8-Cl-cAMPS attenuated the experience-dependent activation of CRE-mediated gene transcription. These results show that ERK phosphorylation in visual cortical neurons represents a molecular readout of patterned visual stimuli and that visual activation of ERK involves the cAMP-PKA system. Finally, because CRE-mediated gene expression was totally dependent on ERK activation, we suggest that PKA action on CRE-mediated gene expression is mediated by ERK.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/análogos & derivados , Regulación de la Expresión Génica/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Elementos de Respuesta/fisiología , Visión Ocular/fisiología , Corteza Visual/metabolismo , Anestésicos Intravenosos/farmacología , Animales , AMP Cíclico/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Oscuridad , Vías de Administración de Medicamentos , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Luz , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Plasticidad Neuronal/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Estimulación Luminosa , Ratas , Ratas Long-Evans , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Corteza Visual/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA