Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Elife ; 112022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35579422

RESUMEN

Striatal spiny projection neurons (SPNs) transform convergent excitatory corticostriatal inputs into an inhibitory signal that shapes basal ganglia output. This process is fine-tuned by striatal GABAergic interneurons (GINs), which receive overlapping cortical inputs and mediate rapid corticostriatal feedforward inhibition of SPNs. Adding another level of control, cholinergic interneurons (CINs), which are also vigorously activated by corticostriatal excitation, can disynaptically inhibit SPNs by activating α4ß2 nicotinic acetylcholine receptors (nAChRs) on various GINs. Measurements of this disynaptic inhibitory pathway, however, indicate that it is too slow to compete with direct GIN-mediated feedforward inhibition. Moreover, functional nAChRs are also present on populations of GINs that respond only weakly to phasic activation of CINs, such as parvalbumin-positive fast-spiking interneurons (PV-FSIs), making the overall role of nAChRs in shaping striatal synaptic integration unclear. Using acute striatal slices from mice we show that upon synchronous optogenetic activation of corticostriatal projections blockade of α4ß2 nAChRs shortened SPN spike latencies and increased postsynaptic depolarizations. The nAChR-dependent inhibition was mediated by downstream GABA release, and data suggest that the GABA source was not limited to GINs that respond strongly to phasic CIN activation. In particular, the observed decrease in spike latency caused by nAChR blockade was associated with a diminished frequency of spontaneous inhibitory postsynaptic currents in SPNs, a parallel hyperpolarization of PV-FSIs, and was occluded by pharmacologically preventing cortical activation of PV-FSIs. Taken together, we describe a role for tonic (as opposed to phasic) activation of nAChRs in striatal function. We conclude that tonic activation of nAChRs by CINs maintains a GABAergic brake on cortically-driven striatal output by 'priming' feedforward inhibition, a process that may shape SPN spike timing, striatal processing, and synaptic plasticity.


Asunto(s)
Cuerpo Estriado , Nicotina , Animales , Colinérgicos/metabolismo , Cuerpo Estriado/fisiología , Interneuronas/fisiología , Ratones , Neuronas/metabolismo , Nicotina/metabolismo , Ácido gamma-Aminobutírico/metabolismo
2.
Cancer Rep (Hoboken) ; 2(1): e1150, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-32721132

RESUMEN

Progress in basic and clinical research is slowed when researchers fail to provide a complete and accurate report of how a study was designed, executed, and the results analyzed. Publishing rigorous scientific research involves a full description of the methods, materials, procedures, and outcomes. Investigators may fail to provide a complete description of how their study was designed and executed because they may not know how to accurately report the information or the mechanisms are not in place to facilitate transparent reporting. Here, we provide an overview of how authors can write manuscripts in a transparent and thorough manner. We introduce a set of reporting criteria that can be used for publishing, including recommendations on reporting the experimental design and statistical approaches. We also discuss how to accurately visualize the results and provide recommendations for peer reviewers to enhance rigor and transparency. Incorporating transparency practices into research manuscripts will significantly improve the reproducibility of the results by independent laboratories. SIGNIFICANCE: Failure to replicate research findings often arises from errors in the experimental design and statistical approaches. By providing a full account of the experimental design, procedures, and statistical approaches, researchers can address the reproducibility crisis and improve the sustainability of research outcomes. In this piece, we discuss the key issues leading to irreproducibility and provide general approaches to improving transparency and rigor in reporting, which could assist in making research more reproducible.


Asunto(s)
Investigación Biomédica/estadística & datos numéricos , Revisión de la Investigación por Pares/métodos , Edición/normas , Mejoramiento de la Calidad/normas , Proyectos de Investigación/normas , Investigadores/normas , Exactitud de los Datos , Políticas Editoriales , Humanos , Reproducibilidad de los Resultados
3.
Nat Neurosci ; 14(7): 881-8, 2011 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-21666674

RESUMEN

Striatal spiny neurons (SPNs) associate a diverse array of cortically processed information to regulate action selection. But how this is done by SPNs is poorly understood. A key step in this process is the transition of SPNs from a hyperpolarized 'down state' to a sustained, depolarized 'up state'. These transitions are thought to reflect a sustained synaptic barrage, involving the coordination of hundreds of pyramidal neurons. Indeed, in mice, simulation of cortical input by glutamate uncaging on proximal dendritic spines produced potential changes in SPNs that tracked input time course. However, brief glutamate uncaging at spines on distal dendrites evoked somatic up states lasting hundreds of milliseconds. These regenerative events depended upon both NMDA receptors and voltage-dependent Ca(2+) channels. Moreover, they were bidirectionally regulated by dopamine receptor signaling. This capacity not only changes our model of how up states are generated in SPNs, it also has fundamental implications for the associative process underlying action selection.


Asunto(s)
Cuerpo Estriado/citología , Dendritas/fisiología , Neuronas/citología , Sinapsis/fisiología , 2-Amino-5-fosfonovalerato/farmacología , Adenosina/análogos & derivados , Adenosina/farmacología , Agonistas del Receptor de Adenosina A2/farmacología , Anestésicos Locales/farmacología , Animales , Animales Recién Nacidos , Biofisica , Calcio/metabolismo , Bloqueadores de los Canales de Calcio , Dendritas/efectos de los fármacos , Dopaminérgicos/farmacología , Estimulación Eléctrica , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Potenciales de la Membrana/fisiología , Mibefradil/farmacología , Ratones , Ratones Transgénicos , Microscopía Confocal , Modelos Neurológicos , N-Metilaspartato/farmacología , Red Nerviosa/fisiología , Neuronas/ultraestructura , Níquel/farmacología , Técnicas de Placa-Clamp , Fenetilaminas/farmacología , Venenos de Araña/farmacología , Tetrodotoxina/farmacología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA