Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849142

RESUMEN

Acute Kidney Injury (AKI) is characterized by an abrupt decline in kidney function and has been associated with excess risks of death, kidney disease progression, and cardiovascular events. The kidney has a high energetic demand with mitochondrial health being essential to renal function and damaged mitochondria has been reported across AKI subtypes. 5' adenosine monophosphate-activated protein kinase (AMPK) activation preserves cellular energetics through improvement of mitochondrial function and biogenesis when ATP levels are low such as under ischemia-induced AKI. We developed a selective potent small molecule pan AMPK activator, compound 1, and tested its ability to increase AMPK activity and preserve kidney function during ischemia/reperfusion injury in rats. A single administration of 1 caused sustained activation of AMPK for at least 24 hours, protected against acute tubular necrosis, and reduced clinical markers of tubular injury such as NephroCheck and Fractional Excretion of Sodium (FENa). Reduction in plasma creatinine and increased Glomerular Filtration Rate (GFR) indicated preservation of kidney function. Surprisingly, we observed a strong diuretic effect of AMPK activation associated with natriuresis both with and without AKI. Our findings demonstrate that activation of AMPK leads to protection of tubular function under hypoxic/ischemic conditions which holds promise as a potential novel therapeutic approach for AKI. Significance Statement No approved pharmacological therapies currently exist for acute kidney injury. We developed Compound 1 which dose-dependently activated AMPK in the kidney and protected kidney function and tubules after ischemic renal injury in the rat. This was accompanied by natriuresis in injured as well as uninjured rats.

2.
Am J Physiol Cell Physiol ; 326(5): C1423-C1436, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38497113

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) is a pivotal coenzyme, essential for cellular reactions, metabolism, and mitochondrial function. Depletion of kidney NAD+ levels and reduced de novo NAD+ synthesis through the tryptophan-kynurenine pathway are linked to acute kidney injury (AKI), whereas augmenting NAD+ shows promise in reducing AKI. We investigated de novo NAD+ biosynthesis using in vitro, ex vivo, and in vivo models to understand its role in AKI. Two-dimensional (2-D) cultures of human primary renal proximal tubule epithelial cells (RPTECs) and HK-2 cells showed limited de novo NAD+ synthesis, likely due to low pathway enzyme gene expression. Using three-dimensional (3-D) spheroid culture model improved the expression of tubular-specific markers and enzymes involved in de novo NAD+ synthesis. However, de novo NAD+ synthesis remained elusive in the 3-D spheroid culture, regardless of injury conditions. Further investigation revealed that 3-D cultured cells could not metabolize tryptophan (Trp) beyond kynurenine (KYN). Intriguingly, supplementation of 3-hydroxyanthranilic acid into RPTEC spheroids was readily incorporated into NAD+. In a human precision-cut kidney slice (PCKS) ex vivo model, de novo NAD+ synthesis was limited due to substantially downregulated kynurenine 3-monooxygenase (KMO), which is responsible for KYN to 3-hydroxykynurenine conversion. KMO overexpression in RPTEC 3-D spheroids successfully reinstated de novo NAD+ synthesis from Trp. In addition, in vivo study demonstrated that de novo NAD+ synthesis is intact in the kidney of the healthy adult mice. Our findings highlight disrupted tryptophan-kynurenine NAD+ synthesis in in vitro cellular models and an ex vivo kidney model, primarily attributed to KMO downregulation.NEW & NOTEWORTHY Nicotinamide adenine dinucleotide (NAD+) is essential in regulating mitochondrial function. Reduced NAD+ synthesis through the de novo pathway is associated with acute kidney injury (AKI). Our study reveals a disruption in de novo NAD+ synthesis in proximal tubular models, but not in vivo, attributed to downregulation of enzyme kynurenine 3-monooxygenase (KMO). These findings highlight a crucial role of KMO in governing de novo NAD+ biosynthesis within the kidney, shedding light on potential AKI interventions.


Asunto(s)
Células Epiteliales , Túbulos Renales Proximales , Quinurenina 3-Monooxigenasa , NAD , Triptófano , Animales , Humanos , Ratones , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/enzimología , Línea Celular , Células Cultivadas , Células Epiteliales/metabolismo , Túbulos Renales Proximales/metabolismo , Quinurenina/metabolismo , Quinurenina 3-Monooxigenasa/metabolismo , Quinurenina 3-Monooxigenasa/genética , Ratones Endogámicos C57BL , NAD/metabolismo , NAD/biosíntesis , Triptófano/metabolismo
3.
Front Mol Biosci ; 10: 1126055, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36876046

RESUMEN

Autosomal Dominant Polycystic Kidney Disease (ADPKD) leads to end stage kidney disease (ESKD) through the development and expansion of multiple cysts throughout the kidney parenchyma. An increase in cyclic adenosine monophosphate (cAMP) plays an important role in generating and maintaining fluid-filled cysts because cAMP activates protein kinase A (PKA) and stimulates epithelial chloride secretion through the cystic fibrosis transmembrane conductance regulator (CFTR). A vasopressin V2 receptor antagonist, Tolvaptan, was recently approved for the treatment of ADPKD patients at high risk of progression. However additional treatments are urgently needed due to the poor tolerability, the unfavorable safety profile, and the high cost of Tolvaptan. In ADPKD kidneys, alterations of multiple metabolic pathways termed metabolic reprogramming has been consistently reported to support the growth of rapidly proliferating cystic cells. Published data suggest that upregulated mTOR and c-Myc repress oxidative metabolism while enhancing glycolytic flux and lactic acid production. mTOR and c-Myc are activated by PKA/MEK/ERK signaling so it is possible that cAMPK/PKA signaling will be upstream regulators of metabolic reprogramming. Novel therapeutics opportunities targeting metabolic reprogramming may avoid or minimize the side effects that are dose limiting in the clinic and improve on the efficacy observed in human ADPKD with Tolvaptan.

4.
Front Endocrinol (Lausanne) ; 14: 1301017, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38161982

RESUMEN

G protein-coupled receptors (GPCRs) have emerged as important drug targets for various chronic diseases, including obesity and diabetes. Obesity is a complex chronic disease that requires long term management predisposing to type 2 diabetes, heart disease, and some cancers. The therapeutic landscape for GPCR as targets of anti-obesity medications has undergone significant changes with the approval of semaglutide, the first peptide glucagon like peptide 1 receptor agonist (GLP-1RA) achieving double digit weight loss (≥10%) and cardiovascular benefits. The enhanced weight loss, with the expected beneficial effect on obesity-related complications and reduction of major adverse cardiovascular events (MACE), has propelled the commercial opportunity for the obesity market leading to new players entering the space. Significant progress has been made on approaches targeting GPCRs such as single peptides that simultaneously activate GIP and/or GCGR in addition to GLP1, oral tablet formulation of GLP-1, small molecules nonpeptidic oral GLP1R and fixed-dose combination as well as add-on therapy for patients already treated with a GLP-1 agonist.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Péptido 1 Similar al Glucagón/uso terapéutico , Péptidos , Pérdida de Peso , Receptores Acoplados a Proteínas G
5.
Front Endocrinol (Lausanne) ; 12: 652628, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054727

RESUMEN

The glucagon-like peptide-1 receptor (GLP-1R) is a G-protein-coupled receptor (GPCR) whose activation results in suppression of food intake and improvement of glucose metabolism. Several receptor interacting proteins regulate the signaling of GLP-1R such as G protein-coupled receptor kinases (GRK) and ß-arrestins. Here we evaluated the physiological and pharmacological impact of GRK inhibition on GLP-1R activity leveraging small molecule inhibitors of GRK2 and GRK3. We demonstrated that inhibition of GRK: i) inhibited GLP-1-mediated ß-arrestin recruitment, ii) enhanced GLP-1-induced insulin secretion in isolated islets and iii) has additive effect with dipeptidyl peptidase 4 in mediating suppression of glucose excursion in mice. These findings highlight the importance of GRK to modulate GLP-1R function in vitro and in vivo. GRK inhibition is a potential therapeutic approach to enhance endogenous and pharmacologically stimulated GLP-1R signaling.


Asunto(s)
Quinasa 1 del Receptor Acoplado a Proteína-G/antagonistas & inhibidores , Péptido 1 Similar al Glucagón/metabolismo , Amidas/química , Animales , Células CHO , Calcio/metabolismo , Cricetulus , Diabetes Mellitus/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Ingestión de Alimentos , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Obesidad/metabolismo , Fosforilación , Receptores de Glucagón/metabolismo , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal , beta-Arrestinas/metabolismo
6.
Toxicol Sci ; 163(2): 374-384, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28206647

RESUMEN

TAK-875, a GPR40 agonist, was withdrawn from Phase III clinical trials due to drug-induced liver injury (DILI). Mechanistic studies were conducted to identify potential DILI hazards (covalent binding burden (CVB), hepatic transporter inhibition, mitochondrial toxicity, and liver toxicity in rats) associated with TAK-875. Treatment of hepatocytes with radiolabeled TAK-875 resulted in a CVB of 2.0 mg/day, which is above the threshold of 1 mg/day considered to be a risk for DILI. Covalent binding to hepatocytes was due to formation of a reactive acyl glucuronide (AG) and, possibly, an acyl-CoA thioester intermediate. Formation of TAK-875AG in hepatocytes and/or in vivo was in the order of non-rodents > human (in vitro only) > rat. These data suggest that non-rodents, and presumably humans, form TAK-875AG more efficiently than rats, and that AG-mediated toxicities in rats may only occur at high doses. TAK-875 (1000 mg/kg/day) formed significant amounts of AG metabolite (≤32.7 µM) in rat liver that was associated with increases in ALT (×4), bilirubin (×9), and bile acids (×3.4), and microscopic findings of hepatocellular hypertrophy and single cell necrosis. TAK-875 and TAK-875AG had similar potencies (within 3-fold) for human multi-drug resistant associated protein 2/4 (MRP2/4) and bile salt export pump, but TAK-875AG was exceptionally potent against MRP3 (0.21 µM). Inhibition of MRPs may contribute to liver accumulation of TAK-875AG. TAK-875 also inhibited mitochondrial respiration in HepG2 cells, and mitochondrial Complex 1 and 2 activities in isolated rat mitochondria. In summary, formation of TAK-875AG, and possibly TAK-875CoA in hepatocytes, coupled with inhibition of hepatic transporters and mitochondrial respiration may be key contributors to TAK-875-mediated DILI.


Asunto(s)
Benzofuranos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Hepatocitos/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Transportadores de Anión Orgánico/antagonistas & inhibidores , Sulfonas/toxicidad , Animales , Benzofuranos/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Perros , Relación Dosis-Respuesta a Droga , Expresión Génica/efectos de los fármacos , Células Hep G2 , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Macaca fascicularis , Mitocondrias Hepáticas/fisiología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Transportadores de Anión Orgánico/genética , Consumo de Oxígeno/efectos de los fármacos , Unión Proteica , Ratas , Especificidad de la Especie , Sulfonas/metabolismo
7.
J Am Soc Mass Spectrom ; 25(4): 614-25, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24500701

RESUMEN

Stromal cell-derived factor 1α (SDF-1α) or CXCL12 is a small pro-inflammatory chemoattractant cytokine and a substrate of dipeptidyl peptidase IV (DPP-IV). Proteolytic cleavage by DPP-IV inactivates SDF-1α and attenuates its interaction with CXCR4, its cell surface receptor. To enable investigation of suppression of such inactivation with pharmacologic inhibition of DPP-IV, we developed quantitative mass spectrometric methods that differentiate intact SDF-1α from its inactive form. Using top-down strategy in quantification, we demonstrated the unique advantage of keeping SDF-1α's two disulfide bridges intact in the analysis. To achieve the optimal sensitivity required for quantification of intact and truncated SDF-1α at endogenous levels in blood, we coupled nano-flow tandem mass spectrometry with antibody-based affinity enrichment. The assay has a quantitative range of 20 pmol/L to 20 nmol/L in human plasma as well as in rhesus monkey plasma. With only slight modification, the same assay can be used to quantify SDF-1α in mice. Using two in vivo animal studies as examples, we demonstrated that it was critical to differentiate intact SDF-1α from its truncated form in the analysis of biomarkers for pharmacologic inhibition of DPP-IV activity. These novel methods enable translational research on suppression of SDF-1 inactivation with DPP-IV inhibition and can be applied to relevant clinical samples in the future to yield new insights on change of SDF-1α levels in disease settings and in response to therapeutic interventions.


Asunto(s)
Quimiocina CXCL12/sangre , Cromatografía de Afinidad/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Quimiocina CXCL12/antagonistas & inhibidores , Dipeptidil Peptidasa 4/metabolismo , Macaca mulatta , Ratones Endogámicos C57BL , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
8.
Biopolymers ; 98(5): 443-50, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23203689

RESUMEN

The ratio of GLP-1/glucagon receptor (GLP1R/GCGR) co-agonism that achieves maximal weight loss without evidence of hyperglycemia was determined in diet-induced obese (DIO) mice chronically treated with GLP1R/GCGR co-agonist peptides differing in their relative receptor agonism. Using glucagon-based peptides, a spectrum of receptor selectivity was achieved by a combination of selective incorporation of GLP-1 sequences, C-terminal modification, backbone lactam stapling to stabilize helical structure, and unnatural amino acid substitutions at the N-terminal dipeptide. In addition to α-amino-isobutyric acid (Aib) substitution at position two, we show that α,α'-dimethyl imidazole acetic acid (Dmia) can serve as a potent replacement for the highly conserved histidine at position one. Selective site-specific pegylation was used to further minimize enzymatic degradation and provide uniform, extended in vivo duration of action. Maximal weight loss devoid of any sign of hyperglycemia was achieved with a co-agonist comparably balanced for in vitro potency at murine GLP1R and GCGR. This peptide exhibited superior weight loss and glucose lowering compared to a structurally matched pure GLP1R agonist, and to co-agonists of relatively reduced GCGR tone. Any further enhancement of the relative GCGR agonist potency yielded increased weight loss but at the expense of elevated blood glucose. We conclude that GCGR agonism concomitant with GLP1R agonism constitutes a promising approach to treatment of the metabolic syndrome. However, the relative ratio of GLP1R/GCGR co-agonism needs to be carefully chosen for each species to maximize weight loss efficacy and minimize hyperglycemia.


Asunto(s)
Péptido 1 Similar al Glucagón/agonistas , Receptores de Glucagón/agonistas , Pérdida de Peso , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Ácidos Aminoisobutíricos/química , Animales , Fármacos Antiobesidad/síntesis química , Fármacos Antiobesidad/farmacocinética , Fármacos Antiobesidad/normas , Glucemia/química , Glucemia/efectos de los fármacos , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/química , Péptido 1 Similar al Glucagón/síntesis química , Péptido 1 Similar al Glucagón/farmacocinética , Receptor del Péptido 1 Similar al Glucagón , Glucosa/efectos adversos , Glucosa/química , Glucosa/farmacología , Glucogenólisis , Histidina/química , Humanos , Hiperglucemia/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Datos de Secuencia Molecular , Proteolisis , Receptores de Glucagón/química , Relación Estructura-Actividad , Transfección
9.
J Med Chem ; 54(14): 5082-96, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21661758

RESUMEN

The potential use of SCD inhibitors for the chronic treatment of diabetes and dyslipidemia has been limited by preclinical adverse events associated with inhibition of SCD in skin and eye tissues. To establish a therapeutic window, we embarked on designing liver-targeted SCD inhibitors by utilizing molecular recognition by liver-specific organic anion transporting polypeptides (OATPs). In doing so, we set out to target the SCD inhibitor to the organ believed to be responsible for the therapeutic efficacy (liver) while minimizing its exposure in the tissues associated with mechanism-based SCD depletion of essential lubricating lipids (skin and eye). These efforts led to the discovery of MK-8245 (7), a potent, liver-targeted SCD inhibitor with preclinical antidiabetic and antidyslipidemic efficacy with a significantly improved therapeutic window.


Asunto(s)
Acetatos/síntesis química , Hipoglucemiantes/síntesis química , Hipolipemiantes/síntesis química , Hígado/enzimología , Estearoil-CoA Desaturasa/antagonistas & inhibidores , Tetrazoles/síntesis química , Acetatos/química , Acetatos/farmacología , Animales , Línea Celular , Difusión , Perros , Femenino , Glándula de Harder/metabolismo , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipolipemiantes/química , Hipolipemiantes/farmacología , Técnicas In Vitro , Transportador 1 de Anión Orgánico Específico del Hígado , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Microsomas/metabolismo , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Ratas , Ratas Sprague-Dawley , Piel/metabolismo , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos , Especificidad de la Especie , Relación Estructura-Actividad , Tetrazoles/química , Tetrazoles/farmacología , Distribución Tisular
10.
J Pept Sci ; 17(4): 270-80, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21294225

RESUMEN

Obesity is one of the major risk factors for type 2 diabetes, and the development of agents, that can simultaneously achieve glucose control and weight loss, is being actively pursued. Therapies based on peptide mimetics of the gut hormone glucagon-like peptide 1 (GLP-1) are rapidly gaining favor, due to their ability to increase insulin secretion in a strictly glucose-dependent manner, with little or no risk of hypoglycemia, and to their additional benefit of causing a modest, but durable weight loss. Oxyntomodulin (OXM), a 37-amino acid peptide hormone of the glucagon (GCG) family with dual agonistic activity on both the GLP-1 (GLP1R) and the GCG (GCGR) receptors, has been shown to reduce food intake and body weight in humans, with a lower incidence of treatment-associated nausea than GLP-1 mimetics. As for other peptide hormones, its clinical application is limited by the short circulatory half-life, a major component of which is cleavage by the enzyme dipeptidyl peptidase IV (DPP-IV). SAR studies on OXM, described herein, led to the identification of molecules resistant to DPP-IV degradation, with increased potency as compared to the natural hormone. Analogs derivatized with a cholesterol moiety display increased duration of action in vivo. Moreover, we identified a single substitution which can change the OXM pharmacological profile from a dual GLP1R/GCGR agonist to a selective GLP1R agonist. The latter finding enabled studies, described in detail in a separate study (Pocai A, Carrington PE, Adams JR, Wright M, Eiermann G, Zhu L, Du X, Petrov A, Lassman ME, Jiang G, Liu F, Miller C, Tota LM, Zhou G, Zhang X, Sountis MM, Santoprete A, Capitò E, Chicchi GG, Thornberry N, Bianchi E, Pessi A, Marsh DJ, SinhaRoy R. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 2009; 58: 2258-2266), which highlight the potential of GLP1R/GCGR dual agonists as a potentially superior class of therapeutics over the pure GLP1R agonists currently in clinical use.


Asunto(s)
Dipeptidil Peptidasa 4/metabolismo , Oxintomodulina/química , Oxintomodulina/metabolismo , Secuencia de Aminoácidos , Animales , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Humanos , Ratones , Datos de Secuencia Molecular , Estructura Molecular , Obesidad/tratamiento farmacológico , Oxintomodulina/farmacología , Oxintomodulina/uso terapéutico , Péptidos/síntesis química , Péptidos/química , Péptidos/genética , Pérdida de Peso/efectos de los fármacos
11.
J Exp Med ; 205(10): 2409-17, 2008 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-18809715

RESUMEN

The current goal of diabetes therapy is to reduce time-averaged mean levels of glycemia, measured as HbA1c, to prevent diabetic complications. However, HbA1c only explains <25% of the variation in risk of developing complications. Because HbA1c does not correlate with glycemic variability when adjusted for mean blood glucose, we hypothesized that transient spikes of hyperglycemia may be an HbA1c-independent risk factor for diabetic complications. We show that transient hyperglycemia induces long-lasting activating epigenetic changes in the promoter of the nuclear factor kappaB (NF-kappaB) subunit p65 in aortic endothelial cells both in vitro and in nondiabetic mice, which cause increased p65 gene expression. Both the epigenetic changes and the gene expression changes persist for at least 6 d of subsequent normal glycemia, as do NF-kappaB-induced increases in monocyte chemoattractant protein 1 and vascular cell adhesion molecule 1 expression. Hyperglycemia-induced epigenetic changes and increased p65 expression are prevented by reducing mitochondrial superoxide production or superoxide-induced alpha-oxoaldehydes. These results highlight the dramatic and long-lasting effects that short-term hyperglycemic spikes can have on vascular cells and suggest that transient spikes of hyperglycemia may be an HbA1c-independent risk factor for diabetic complications.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , Glucosa/metabolismo , Hiperglucemia/metabolismo , Animales , Bovinos , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Complicaciones de la Diabetes , Células Endoteliales/citología , Células Endoteliales/fisiología , Hemoglobina Glucada/genética , Hemoglobina Glucada/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Regiones Promotoras Genéticas , Proteína Metiltransferasas , Especies Reactivas de Oxígeno/metabolismo , Factores de Riesgo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Proteína Desacopladora 1 , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
12.
J Clin Invest ; 118(8): 2959-68, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18618016

RESUMEN

Prolonged activation of p70 S6 kinase (S6K) by insulin and nutrients leads to inhibition of insulin signaling via negative feedback input to the signaling factor IRS-1. Systemic deletion of S6K protects against diet-induced obesity and enhances insulin sensitivity in mice. Herein, we present evidence suggesting that hypothalamic S6K activation is involved in the pathogenesis of diet-induced hepatic insulin resistance. Extending previous findings that insulin suppresses hepatic glucose production (HGP) partly via its effect in the hypothalamus, we report that this effect was blunted by short-term high-fat diet (HFD) feeding, with concomitant suppression of insulin signaling and activation of S6K in the mediobasal hypothalamus (MBH). Constitutive activation of S6K in the MBH mimicked the effect of the HFD in normal chow-fed animals, while suppression of S6K by overexpression of dominant-negative S6K or dominant-negative raptor in the MBH restored the ability of MBH insulin to suppress HGP after HFD feeding. These results suggest that activation of hypothalamic S6K contributes to hepatic insulin resistance in response to short-term nutrient excess.


Asunto(s)
Dieta , Hipotálamo/metabolismo , Resistencia a la Insulina , Hígado/fisiología , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Adenoviridae/genética , Animales , Activación Enzimática , Masculino , Ratas , Ratas Sprague-Dawley
13.
Neuropharmacology ; 54(1): 206-12, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17675101

RESUMEN

Endocannabinoids are paracrine/autocrine lipid mediators with several biological functions. One of these, i.e. the capability to stimulate food intake via cannabinoid CB(1) receptors, has been particularly studied, thus leading to the development of the first CB(1) receptor blocker, rimonabant, as a therapeutic tool against obesity and related metabolic disorders. Hypothalamic endocannabinoids stimulate appetite by regulating the expression and release of anorexic and orexigenic neuropeptides via CB(1) receptors. In turn, the tone of the latter receptors is regulated by hormones, including leptin, glucocorticoids and possibly ghrelin and neuropeptide Y, by modulating the biosynthesis of the endocannabinoids in various areas of the hypothalamus. CB(1) receptor stimulation is also known to increase blood glucose during an oral glucose tolerance test in rats. Here we investigated in the rat if insulin, which is known to exert fundamental actions at the level of the mediobasal hypothalamus (MBH), and the melanocortin system, namely alpha-melanocyte stimulating hormone (alpha-MSH) and melanocortin receptor-4 (MCR-4), also regulate hypothalamic endocannabinoid levels, measured by isotope-dilution liquid chromatography coupled to mass spectrometry. No effect on anandamide and 2-arachidonoylglycerol levels was observed after 2h infusion of insulin in the MBH, i.e. under conditions in which the hormone reduces blood glucose, nor with intra-cerebroventricular injection of alpha-MSH, under conditions in which the neuropeptide reduces food intake. Conversely, blockade of MCR-4 receptors with HS014 produced a late (6h after systemic administration) stimulatory effect on endocannabinoid levels as opposed to a rapid and prolonged stimulation of food-intake (observable 2 and 6h after administration). These data suggest that inhibition of endocannabinoid levels does not mediate the effect of insulin on hepatic glucose production nor the food intake-inhibitory effect of alpha-MSH, although stimulation of endocannabinoid levels might underlie part of the late stimulatory effects of MCR-4 blockade on food intake.


Asunto(s)
Moduladores de Receptores de Cannabinoides/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Endocannabinoides , Hormonas/farmacología , Hipotálamo/efectos de los fármacos , Péptidos/farmacología , Análisis de Varianza , Animales , Glucosa/metabolismo , Hipotálamo/metabolismo , Insulina/farmacología , Hígado/efectos de los fármacos , Masculino , Péptidos Cíclicos/farmacología , Ratas , Ratas Wistar , Factores de Tiempo , alfa-MSH/farmacología
14.
Cell Metab ; 6(3): 208-16, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17767907

RESUMEN

The hallmark of type 2 diabetes is excessive hepatic glucose production. Several transcription factors and coactivators regulate this process in cultured cells. But gene ablation experiments have yielded few clues as to the physiologic mediators of this process in vivo. We show that inactivation of the gene encoding forkhead protein Foxo1 in mouse liver results in 40% reduction of glucose levels at birth and 30% reduction in adult mice after a 48 hr fast. Gene expression and glucose clamp studies demonstrate that Foxo1 ablation impairs fasting- and cAMP-induced glycogenolysis and gluconeogenesis. Pgc1alpha is unable to induce gluconeogenesis in Foxo1-deficient hepatocytes, while the cAMP response is significantly blunted. Conversely, Foxo1 deletion in liver curtails excessive glucose production caused by generalized ablation of insulin receptors and prevents neonatal diabetes and hepatosteatosis in insulin receptor knockout mice. The data provide a unifying mechanism for regulation of hepatic glucose production by cAMP and insulin.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Glucosa/metabolismo , Hígado/metabolismo , Animales , Células Cultivadas , Privación de Alimentos , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Técnica de Clampeo de la Glucosa , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Ratones , Ratones Noqueados , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Proteínas/genética , Proteínas/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción
15.
Diabetes ; 56(8): 1969-76, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17475934

RESUMEN

OBJECTIVE: Adiponectin increases insulin sensitivity and contributes to insulin's indirect effects on hepatic glucose production. RESEARCH DESIGN AND METHODS: To examine adiponectin's contribution to insulin action, we analyzed adiponectin levels and activation of AMP-activated protein kinase (AMPK) in insulin receptor transgenic/knockout mice (L1), a genetic model of resistance to insulin's indirect effects on hepatic glucose production. RESULTS: In euglycemic, insulin-resistant L1 mice, we detected hyperadiponectinemia with normal levels of adiponectin receptor-1 and -2. Moreover, adiponectin administration is unable to lower glucose levels or induce activation of AMPK, consistent with a state of adiponectin resistance. In a subset of hyperglycemic L1 mice, we observed decreased mRNA expression of AdipoR2 in liver and muscle, as well as decreased peroxisome proliferator-activated receptor (PPAR)alpha target gene expression in liver, raising the possibility that deterioration of adiponectin/AdipoR2 signaling via PPARalpha activation contributes to the progression from compensated insulin resistance to diabetes. In contrast, we failed to detect changes in other markers of the systemic or local inflammatory response. CONCLUSIONS: These data provide evidence for a mechanism of adiponectin resistance and corroborate the notion that adiponectin potentiates hepatic insulin sensitivity.


Asunto(s)
Adiponectina/sangre , Adiponectina/farmacología , Resistencia a la Insulina , Receptor de Insulina/deficiencia , Receptor de Insulina/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Biomarcadores , Glucemia/metabolismo , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Trastornos del Metabolismo de la Glucosa/metabolismo , Trastornos del Metabolismo de la Glucosa/patología , Humanos , Insulina/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Transgénicos , Complejos Multienzimáticos/metabolismo , PPAR alfa/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor de Insulina/genética , Receptores de Adiponectina , Receptores de Superficie Celular/genética , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Factores de Tiempo
16.
J Clin Invest ; 116(6): 1686-95, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16741579

RESUMEN

Stearoyl-CoA desaturase-1 (SCD1) catalyzes the synthesis of monounsaturated fatty acids from saturated fatty acids. Mice with a targeted disruption of Scd1 gene locus are lean and display increased insulin sensitivity. To examine whether Scd1 activity is required for the development of diet-induced hepatic insulin resistance, we used a sequence-specific antisense oligodeoxynucleotide (ASO) to lower hepatic Scd1 expression in rats and mice with diet-induced insulin resistance. Treatment of rats with Scd1 ASO markedly decreased liver Scd1 expression (approximately 80%) and total Scd activity (approximately 50%) compared with that in rats treated with scrambled ASO (control). Insulin clamp studies revealed severe hepatic insulin resistance in high-fat-fed rats and mice that was completely reversed by 5 days of treatment with Scd1 ASO. The latter treatment decreased glucose production (by approximately 75%), gluconeogenesis, and glycogenolysis. Downregulation of Scd1 also led to increased Akt phosphorylation and marked decreases in the expression of glucose-6-phosphatase (Glc-6-Pase) and phosphoenolpyruvate carboxykinase (PEPCK). Thus, Scd1 is required for the onset of diet-induced hepatic insulin resistance.


Asunto(s)
Dieta , Grasas de la Dieta , Resistencia a la Insulina , Isoenzimas/metabolismo , Hígado/enzimología , Oligonucleótidos Antisentido/metabolismo , Estearoil-CoA Desaturasa/metabolismo , Animales , Glucosa/metabolismo , Glucosa-6-Fosfatasa/metabolismo , Humanos , Insulina/metabolismo , Isoenzimas/genética , Metabolismo de los Lípidos , Hígado/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Estearoil-CoA Desaturasa/genética
17.
J Clin Invest ; 116(4): 1081-91, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16528412

RESUMEN

Short-term overfeeding blunts the central effects of fatty acids on food intake and glucose production. This acquired defect in nutrient sensing could contribute to the rapid onset of hyperphagia and insulin resistance in this model. Here we examined whether central inhibition of lipid oxidation is sufficient to restore the hypothalamic levels of long-chain fatty acyl-CoAs (LCFA-CoAs) and to normalize food intake and glucose homeostasis in overfed rats. To this end, we targeted the liver isoform of carnitine palmitoyltransferase-1 (encoded by the CPT1A gene) by infusing either a sequence-specific ribozyme against CPT1A or an isoform-selective inhibitor of CPT1A activity in the third cerebral ventricle or in the mediobasal hypothalamus (MBH). Inhibition of CPT1A activity normalized the hypothalamic levels of LCFA-CoAs and markedly inhibited feeding behavior and hepatic glucose fluxes in overfed rats. Thus central inhibition of lipid oxidation is sufficient to restore hypothalamic lipid sensing as well as glucose and energy homeostasis in this model and may be an effective approach to the treatment of diet-induced obesity and insulin resistance.


Asunto(s)
Metabolismo Energético , Glucosa/biosíntesis , Hipotálamo/fisiología , Metabolismo de los Lípidos , Animales , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Carnitina O-Palmitoiltransferasa/metabolismo , Metabolismo Energético/fisiología , Homeostasis , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Metabolismo de los Lípidos/fisiología , Hígado/citología , Hígado/metabolismo , Masculino , Modelos Biológicos , Oxidación-Reducción , Ratas , Ratas Sprague-Dawley
18.
Cell Metab ; 1(1): 53-61, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16054044

RESUMEN

Increased glucose production (GP) is the major determinant of fasting hyperglycemia in diabetes mellitus. Previous studies suggested that lipid metabolism within specific hypothalamic nuclei is a biochemical sensor for nutrient availability that exerts negative feedback on GP. Here we show that central inhibition of fat oxidation leads to selective activation of brainstem neurons within the nucleus of the solitary tract and the dorsal motor nucleus of the vagus and markedly decreases liver gluconeogenesis, expression of gluconeogenic enzymes, and GP. These effects require central activation of ATP-dependent potassium channels (K(ATP)) and descending fibers within the hepatic branch of the vagus nerve. Thus, hypothalamic lipid sensing potently modulates glucose metabolism via neural circuitry that requires the activation of K(ATP) and selective brainstem neurons and intact vagal input to the liver. This crosstalk between brain and liver couples central nutrient sensing to peripheral nutrient production and its disruption may lead to hyperglycemia.


Asunto(s)
Encéfalo/metabolismo , Glucosa/metabolismo , Hígado/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Técnica de Clampeo de la Glucosa , Homeostasis , Hiperglucemia/metabolismo , Cinética , Metabolismo de los Lípidos , Hígado/irrigación sanguínea , Masculino , Modelos Biológicos , Neuronas/metabolismo , Oxígeno/metabolismo , Páncreas , Monoéster Fosfórico Hidrolasas/metabolismo , Potasio/metabolismo , Canales de Potasio/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nervio Vago/patología
19.
Science ; 309(5736): 943-7, 2005 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-16081739

RESUMEN

The brain keenly depends on glucose for energy, and mammalians have redundant systems to control glucose production. An increase in circulating glucose inhibits glucose production in the liver, but this negative feedback is impaired in type 2 diabetes. Here we report that a primary increase in hypothalamic glucose levels lowers blood glucose through inhibition of glucose production in rats. The effect of glucose requires its conversion to lactate followed by stimulation of pyruvate metabolism, which leads to activation of adenosine triphosphate (ATP)-sensitive potassium channels. Thus, interventions designed to enhance the hypothalamic sensing of glucose may improve glucose homeostasis in diabetes.


Asunto(s)
Glucemia/metabolismo , Glucosa/metabolismo , Hipotálamo/metabolismo , Hígado/metabolismo , Piruvatos/metabolismo , Animales , Astrocitos/metabolismo , Ciclo del Ácido Cítrico , Retroalimentación Fisiológica , Glucosa/administración & dosificación , Glucosa-6-Fosfatasa/metabolismo , Inyecciones Intraventriculares , Ácido Láctico/metabolismo , Masculino , Neuronas/metabolismo , Canales de Potasio/metabolismo , Ratas , Ratas Sprague-Dawley
20.
Nature ; 434(7036): 1026-31, 2005 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-15846348

RESUMEN

Obesity is the driving force behind the worldwide increase in the prevalence of type 2 diabetes mellitus. Hyperglycaemia is a hallmark of diabetes and is largely due to increased hepatic gluconeogenesis. The medial hypothalamus is a major integrator of nutritional and hormonal signals, which play pivotal roles not only in the regulation of energy balance but also in the modulation of liver glucose output. Bidirectional changes in hypothalamic insulin signalling therefore result in parallel changes in both energy balance and glucose metabolism. Here we show that activation of ATP-sensitive potassium (K(ATP)) channels in the mediobasal hypothalamus is sufficient to lower blood glucose levels through inhibition of hepatic gluconeogenesis. Finally, the infusion of a K(ATP) blocker within the mediobasal hypothalamus, or the surgical resection of the hepatic branch of the vagus nerve, negates the effects of central insulin and halves the effects of systemic insulin on hepatic glucose production. Consistent with these results, mice lacking the SUR1 subunit of the K(ATP) channel are resistant to the inhibitory action of insulin on gluconeogenesis. These findings suggest that activation of hypothalamic K(ATP) channels normally restrains hepatic gluconeogenesis, and that any alteration within this central nervous system/liver circuit can contribute to diabetic hyperglycaemia.


Asunto(s)
Adenosina Trifosfato/metabolismo , Gluconeogénesis , Glucosa/biosíntesis , Hipotálamo/metabolismo , Hígado/metabolismo , Canales de Potasio/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Glucosa/metabolismo , Hiperinsulinismo/metabolismo , Hiperinsulinismo/fisiopatología , Insulina/metabolismo , Hígado/inervación , Masculino , Ratones , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/deficiencia , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Canales de Potasio/química , Canales de Potasio/genética , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Droga , Receptores de Sulfonilureas , Nervio Vago/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA