Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612571

RESUMEN

Osteosarcoma is a highly malignant, painful cancer with poor treatment opportunities and a bad prognosis. Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors are non-selective cation channels that have been of great interest in cancer, as their expression is increased in some malignancies. In our study we aim to characterize the expression and functionality of the TRPA1 and TRPV1 channels in human and mouse osteosarcoma tissues and in a mouse cell line. TRPA1/Trpa1 and TRPV1/Trpv1 mRNA expressions were demonstrated by PCR gel electrophoresis and RNAscope in situ hybridization. The function of these channels was confirmed by their radioactive 45Ca2+ uptake in response to the TRPA1 agonist, Allyl-isothiocyanate (AITC), and TRPV1 agonist, capsaicin, in K7M2 cells. An ATP-based K2M7 cell viability luminescence assay was used to determine cell viability after AITC or capsaicin treatments. Both TRPA1/Trpa1 and TRPV1/Trpv1 were expressed similarly in human and mouse osteosarcoma tissues, while Trpa1 transcripts were more abundantly present in K7M2 cells. TRPA1 activation with 200 µM AITC induced a significant 45Ca2+ influx into K7M2 cells, and the antagonist attenuated this effect. In accordance with the lower Trpv1 expression, capsaicin induced a moderate 45Ca2+ uptake, which did not reach the level of statistical significance. Both AITC and capsaicin significantly reduced K7M2 cell viability, demonstrating EC50 values of 22 µM and 74 µM. The viability-decreasing effect of AITC was significantly but only partially antagonized by HC-030031, but the action of capsaicin was not affected by the TRPV1 antagonist capsazepine. We provide here the first data on the functional expression of the TRPA1 and TRPV1 ion channels in osteosarcoma, suggesting novel diagnostic and/or therapeutic perspectives.


Asunto(s)
Neoplasias Óseas , Radioisótopos de Calcio , Isotiocianatos , Osteosarcoma , Canal Catiónico TRPA1 , Canales Catiónicos TRPV , Animales , Humanos , Ratones , Neoplasias Óseas/genética , Capsaicina/farmacología , Osteosarcoma/genética , Canal Catiónico TRPA1/genética , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
2.
Oral Dis ; 29(5): 1905-1919, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35485982

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is among the common tumors associated with high mortality. The aim of our meta-analysis was to determine how additional anti-epidermal growth factor receptor (EGFR) therapy to standard chemotherapy affects the progression-free (PFS) and overall survival (OS) of the patients, besides the most common side effects. We used CENTRAL, MEDLINE, and Embase databases until October 26, 2020, and included 13 eligible randomized controlled trials in our systematic research. The pooled hazard ratios (HR) for the main outcomes from the original data were estimated and for the other dichotomous outcomes, odds ratios (ORs) with their 95% confidence intervals (CI) were calculated. Addition of EGFR inhibitors to conventional chemotherapy significantly decreased the death and disease progression (for PFS HR: 0.68, 95% CI: 0.55-0.81, I2  = 65.5%, p = 0.005) and mortality (for OS HR: 0.83, 95% CI: 0.72-0.94, I2  = 42.3%, p = 0.076). In the EGFR inhibitor group, we revealed an increased chance of the over Grade 3 skin rashes (OR: 4.86; 95% CI: 1.52-15.49, I2  = 2.3%, p = 0.407), and all Grade skin rashes (OR: 18.32, 95% CI: 8.07-41.60, I2  = 56.6%, p = 0.032). Despite their unwanted dermatological side effects, the addition of EGFR inhibitors is recommended to be included in advanced HNSCC therapy.


Asunto(s)
Antineoplásicos , Neoplasias de Cabeza y Cuello , Neoplasias Pulmonares , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Antineoplásicos/efectos adversos , Inhibidores de Proteínas Quinasas/efectos adversos , Receptores ErbB , Neoplasias de Cabeza y Cuello/tratamiento farmacológico
3.
Pharmacol Res ; 182: 106347, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35820612

RESUMEN

Complex Regional Pain Syndrome (CRPS) represents severe chronic pain, hypersensitivity, and inflammation induced by sensory-immune-vascular interactions after a small injury. Since the therapy is unsatisfactory, there is a great need to identify novel drug targets. Unbiased transcriptomic analysis of the dorsal root ganglia (DRG) was performed in a passive transfer-trauma mouse model, and the predicted pathways were confirmed by pharmacological interventions. In the unilateral L3-5 DRGs 125 genes were differentially expressed in response to plantar incision and injecting IgG of CRPS patients. These are related to inflammatory and immune responses, cytokines, chemokines and neuropeptides. Pathway analysis revealed the involvement of Tumor Necrosis Factor (TNF) and Janus kinase (JAK-STAT) signaling. The relevance of these pathways was proven by abolished CRPS IgG-induced hyperalgesia and reduced microglia and astrocyte markers in pain-associated central nervous system regions after treatment with the soluble TNF alpha receptor etanercept or JAK inhibitor tofacitinib. These results provide the first evidence for CRPS-related neuroinflammation and abnormal cytokine signaling at the level of the primary sensory neurons in a translational mouse model and suggest that etanercept and tofacitinib might have drug repositioning potentials for CRPS-related pain.


Asunto(s)
Dolor Crónico , Síndromes de Dolor Regional Complejo , Animales , Síndromes de Dolor Regional Complejo/tratamiento farmacológico , Síndromes de Dolor Regional Complejo/patología , Modelos Animales de Enfermedad , Etanercept/farmacología , Etanercept/uso terapéutico , Ganglios Espinales/patología , Inmunoglobulina G , Quinasas Janus , Ratones , Factores de Transcripción STAT , Transducción de Señal , Transcriptoma , Factor de Necrosis Tumoral alfa
4.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163843

RESUMEN

Oral squamous cell carcinoma (OSCC) is a common cancer with poor prognosis. Transient Receptor Potential Ankyrin 1 (TRPA1) and Vanilloid 1 (TRPV1) receptors are non-selective cation channels expressed on primary sensory neurons and epithelial and immune cells. TRPV1 mRNA and immunopositivity, as well as TRPA1-like immunoreactivity upregulation, were demonstrated in OSCC, but selectivity problems with the antibodies still raise questions and their functional relevance is unclear. Therefore, here, we investigated TRPA1 and TRPV1 expressions in OSCC and analyzed their functions. TRPA1 and TRPV1 mRNA were determined by RNAscope in situ hybridization and qPCR. Radioactive 45Ca2+ uptake and ATP-based luminescence indicating cell viability were measured in PE/CA-PJ41 cells in response to the TRPA1 agonist allyl-isothiocyanate (AITC) and TRPV1 agonist capsaicin to determine receptor function. Both TRPA1 and TRPV1 mRNA are expressed in the squamous epithelium of the human oral mucosa and in PE/CA-PJ41 cells, and their expressions are significantly upregulated in OSCC compared to healthy mucosa. TRPA1 and TRPV1 activation (100 µM AITC, 100 nM capsaicin) induced 45Ca2+-influx into PE/CA-PJ41 cells. Both AITC (10 nM-5 µM) and capsaicin (100 nM-45 µM) reduced cell viability, reaching significant decrease at 100 nM AITC and 45 µM capsaicin. We provide the first evidence for the presence of non-neuronal TRPA1 receptor in the OSCC and confirm the expression of TRPV1 channel. These channels are functionally active and might regulate cancer cell viability.


Asunto(s)
Carcinoma de Células Escamosas/genética , Neoplasias de la Boca/genética , Canal Catiónico TRPA1/genética , Canales Catiónicos TRPV/genética , Regulación hacia Arriba , Anciano , Anciano de 80 o más Años , Calcio/metabolismo , Capsaicina/farmacología , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Hibridación in Situ , Isotiocianatos/farmacología , Masculino , Persona de Mediana Edad , Neoplasias de la Boca/metabolismo , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/metabolismo , Regulación hacia Arriba/efectos de los fármacos
5.
Molecules ; 27(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35164242

RESUMEN

All-trans-retinoic acid (ATRA), the active metabolite of vitamin A, plays a pivotal role in cell differentiation, proliferation and embryonic development. It is an effective therapy for dermatological disorders and malignancies. ATRA is prone to isomerization and oxidation, which can affect its activity and selectivity. Novel diphenylacetylene-based ATRA analogues with increased stability can help to overcome these problems and may offer significant potential as therapeutics for a variety of cancers and neurodegenerative diseases, including amyotrophic lateral sclerosis. Here, we investigated the effects of these retinoids on cell viability and genotoxicity in the widely used model system of the rapidly proliferating Chinese hamster ovary cell line. DC360 is a fluorescent ATRA analogue and DC324 is a non-active derivative of DC360. EC23, DC525, DC540, DC645, and DC712 are promising analogues with increased bioactivity. The cytotoxic activity of the compounds was evaluated by ATP assay and DNA damage was tested by comet assay. No cytotoxicity was observed in the 10-6-10-5 M concentration range. All compounds induced DNA migration similar to ATRA, but DC324, DC360 and EC23 did so to a greater extent, particularly at higher concentrations. We believe that retinoid receptor-independent genotoxicity is a general characteristic of these compounds; however, further studies are needed to identify the molecular mechanisms and understand their complex biological functions.


Asunto(s)
Acetileno/análogos & derivados , Daño del ADN , Retinoides/farmacología , Acetileno/química , Adenosina Trifosfato/metabolismo , Animales , Células CHO , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa , Cricetulus , Retinoides/química
6.
Int J Mol Sci ; 21(17)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887395

RESUMEN

Head-and-neck squamous cell carcinomas (HNSCC) remain a leading cause of cancer morbidity and mortality worldwide. This is a largely preventable disease with smoking, alcohol abuse, and human papilloma virus (HPV) being the main risk factors. Yet, many patients are diagnosed with advanced disease, and no survival improvement has been seen for oral SCC in the past decade. Clearly, new diagnostic and prognostic markers are needed for early diagnosis and to guide therapy. Gene expression studies implied the involvement of transient receptor potential (TRP) channels in the pathogenesis of HNSCC. TRPs are expressed in normal epithelium where they play a key role in proliferation and differentiation. There is increasing evidence that the expression of TRP channels may change in HNSCC with important implications for diagnosis, prognosis, and therapy. In this review, we propose that TRP channel expression may afford a novel opportunity for early diagnosis of HNSCC and targeted molecular treatment.


Asunto(s)
Neoplasias de Cabeza y Cuello/diagnóstico , Neoplasias de Cabeza y Cuello/terapia , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo
7.
Endocrinology ; 158(10): 3249-3258, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28977586

RESUMEN

Sex differences exist in chronic pain pathologies, and gonadal estradiol (E2) alters the pain sensation. The nocisensor transient receptor potential vanilloid 1 (TRPV1) receptor plays a critical role in triggering pain. Here we examined the impact of E2 on the function of TRPV1 receptor in mice sensory neurons in vitro and in vivo. Both mechano- and thermonociceptive thresholds of the plantar surface of the paw of female mice were significantly lower in proestrus compared with the estrus phase. These thresholds were higher in ovariectomized (OVX) mice and significantly lower in sham-operated mice in proestrus compared with the sham-operated mice in estrus phase. This difference was absent in TRPV1 receptor-deficient mice. Furthermore, E2 potentiated the TRPV1 receptor activation-induced mechanical hyperalgesia in OVX mice. Long pretreatment (14 hours) with E2 induced a significant increase in TRPV1 receptor messenger RNA expression and abolished the capsaicin-induced TRPV1 receptor desensitization in primary sensory neurons. The short E2 incubation (10 minutes) also prevented the desensitization, which reverted after coadministration of E2 and the tropomyosin-related kinase A (TrkA) receptor inhibitor. Our study provides in vivo and in vitro evidence for E2-induced TRPV1 receptor upregulation and sensitization mediated by TrkAR via E2-induced genomic and nongenomic mechanisms. The sensitization and upregulation of TRPV1 receptor by E2 in sensory neurons may explain the greater pain sensitivity in female mice.


Asunto(s)
Estradiol/farmacología , Dolor/fisiopatología , Canales Catiónicos TRPV/efectos de los fármacos , Canales Catiónicos TRPV/fisiología , Animales , Capsaicina/farmacología , Células Cultivadas , Tolerancia a Medicamentos , Estro/fisiología , Femenino , Expresión Génica/efectos de los fármacos , Calor , Masculino , Mecanorreceptores/efectos de los fármacos , Mecanorreceptores/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nociceptores/efectos de los fármacos , Nociceptores/fisiología , Ovariectomía , Proestro/fisiología , ARN Mensajero/análisis , Células Receptoras Sensoriales/química , Células Receptoras Sensoriales/fisiología , Caracteres Sexuales , Canales Catiónicos TRPV/genética , Regulación hacia Arriba/efectos de los fármacos
8.
Mol Pain ; 13: 1744806917705564, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28478727

RESUMEN

Transient Receptor Potential Vanilloid 1 (TRPV1) and Transient Receptor Potential Ankyrin 1 (TRPA1) expressed mainly by primary sensory neurons function as major nociceptive integrators. They are also present on the rat endometrium in an oestrogen-regulated manner. TRPV1 is upregulated in peritoneal and ovarian endometriosis patients, but there is no information about TRPA1 and their pathophysiological significances. In this study, patients undergoing laparoscopic surgery were investigated: severe dysmenorrhoea due to rectosigmoid deep infiltrating endometriosis ( n = 15), uterine fibroid-induced moderate dysmenorrhoea ( n = 7) and tubal infertility with no pain ( n = 6). TRPA1 and TRPV1 mRNA and protein expressions were determined by quantitative polymerase chain reaction and semi-quantitative immunohistochemistry from the endometrium samples taken by curettage. Results were correlated with the clinical characteristics including pain intensity. TRPA1 and TRPV1 receptors were expressed in the healthy human endometrium at mRNA and protein levels. Sparse, scattered cytoplasmic TRPA1 and TRPV1 immunopositivities were found in the stroma and epithelial layers. We detected upregulated mRNA levels in deep infiltrating endometriosis lesions, and TRPV1 gene expression was also elevated in autocontrol endometrium of deep infiltrating endometriosis patients. Histological scoring revealed significant TRPA1 and TRPV1 difference between deep infiltrating endometriosis stroma and epithelium, and in deep infiltrating endometriosis epithelium compared to control samples. Besides, we measured elevated stromal TRPV1 immunopositivity in deep infiltrating endometriosis. Stromal TRPA1 and TRPV1 immunoreactivities strongly correlated with dysmenorrhoea severity, as well TRPV1 expression on ectopic epithelial cells and macrophages with dyspareunia. Epithelial TRPA1 and stromal TRPV1 immunopositivity also positively correlated with dyschezia severity. We provide the first evidence for the presence of non-neuronal TRPA1 receptor in the healthy human endometrium and confirm the expression of TRPV1 channels. Their upregulations in rectosigmoid deep infiltrating endometriosis lesions and correlations with pain intensity suggest potential roles in pathophysiological mechanisms of the disease.


Asunto(s)
Endometriosis/metabolismo , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Acroleína/metabolismo , Adolescente , Adulto , Ácidos Araquidónicos , Bradiquinina/metabolismo , Endocannabinoides , Endometriosis/genética , Femenino , Humanos , Peróxido de Hidrógeno/metabolismo , Inmunohistoquímica , Persona de Mediana Edad , Alcamidas Poliinsaturadas , Prostaglandinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canal Catiónico TRPA1/genética , Canales Catiónicos TRPV/genética , Canales de Potencial de Receptor Transitorio/genética , Adulto Joven
9.
Glia ; 64(12): 2166-2180, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27568827

RESUMEN

Multiple sclerosis is a chronic inflammatory, demyelinating degenerative disease of the central nervous system. Current treatments target pathological immune responses to counteract the inflammatory processes. However, these drugs do not restrain the long-term progression of clinical disability. For this reason, new therapeutic approaches and identification of novel target molecules are needed to prevent demyelination or promote repair mechanisms. Transient Receptor Potential Ankyrin 1 (TRPA1) is a nonselective cation channel with relatively high Ca2+ permeability. Its pathophysiological role in central nervous system disorders has not been elucidated yet. In the present study, we aimed to assess the distribution of TRPA1 in the mouse brain and reveal its regulatory role in the cuprizone-induced demyelination. This toxin-induced model, characterized by oligodendrocyte apoptosis and subsequent primary demyelination, allows us to investigate the nonimmune aspects of multiple sclerosis. We found that TRPA1 is expressed on astrocytes in the mouse central nervous system. Interestingly, TRPA1 deficiency significantly attenuated cuprizone-induced demyelination by reducing the apoptosis of mature oligodendrocytes. Our data suggest that TRPA1 regulates mitogen-activated protein kinase pathways, as well as transcription factor c-Jun and a proapoptotic Bcl-2 family member (Bak) expression resulting in enhanced oligodendrocyte apoptosis. In conclusion, we propose that TRPA1 receptors enhancing the intracellular Ca2+ concentration modulate astrocyte functions, and influence the pro or anti-apoptotic pathways in oligodendrocytes. Inhibition of TRPA1 receptors might successfully diminish the degenerative pathology in multiple sclerosis and could be a promising therapeutic target to limit central nervous system damage in demyelinating diseases. GLIA 2016;64:2166-2180.


Asunto(s)
Apoptosis/efectos de los fármacos , Encéfalo , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Inhibidores de la Monoaminooxidasa/toxicidad , Oligodendroglía/efectos de los fármacos , Canal Catiónico TRPA1/deficiencia , Poliposis Adenomatosa del Colon/metabolismo , Animales , Apoptosis/genética , Peso Corporal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Enfermedades Desmielinizantes/genética , Modelos Animales de Enfermedad , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Gliosis/inducido químicamente , Gliosis/genética , Ratones , Ratones Noqueados , Proteína Básica de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Canal Catiónico TRPA1/genética , Canal Catiónico TRPA1/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo
10.
J Mol Endocrinol ; 56(2): 135-49, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26643912

RESUMEN

Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors expressed predominantly in sensory nerves are activated by inflammatory stimuli and mediate inflammation and pain. Although they have been shown in the human endometrium, their regulation and function are unknown. Therefore, we investigated their estrogen- and progesterone-dependent alterations in the rat endometrium in comparison with the estrogen-regulated inflammatory cytokine macrophage migration inhibitory factor (MIF). Four-week-old (sexually immature) and four-month-old (sexually mature) female rats were treated with the non-selective estrogen receptor (ER) agonist diethylstilboestrol (DES), progesterone and their combination, or ovariectomized. RT-PCR and immunohistochemistry were performed to determine mRNA and protein expression levels respectively. Channel function was investigated with ratiometric [Ca(2+)]i measurement in cultured primary rat endometrial cells. Both TRP receptors and MIF were detected in the endometrium at mRNA and protein levels, and their localizations were similar. Immunostaining was observed in the immature epithelium, while stromal, glandular and epithelial positivity were observed in adults. Functionally active TRP receptor proteins were shown in endometrial cells by activation-induced calcium influx. In adults, Trpa1 and Trpv1 mRNA levels were significantly up-regulated after DES treatment. TRPA1 increased after every treatment, but TRPV1 remained unchanged following the combined treatment and ovariectomy. In immature rats, DES treatment resulted in increased mRNA expression of both channels and elevated TRPV1 immunopositivity. MIF expression changed in parallel with TRPA1/TRPV1 in most cases. DES up-regulated Trpa1, Trpv1 and Mif mRNA levels in endometrial cell cultures, but 17ß-oestradiol having ERα-selective potency increased only the expression of Trpv1. We provide the first evidence for TRPA1/TRPV1 expression and their estrogen-induced up-regulation in the rat endometrium in correlation with the MIF.


Asunto(s)
Endometrio/metabolismo , Estrógenos/fisiología , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Células Cultivadas , Femenino , Expresión Génica , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Cultivo Primario de Células , Ratas Wistar , Canal Catiónico TRPA1 , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPV/genética , Activación Transcripcional , Regulación hacia Arriba
11.
PLoS One ; 9(9): e108164, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25265225

RESUMEN

Transient Receptor Potential Ankyrin 1 (TRPA1) channels are localized on sensory nerves and several non-neural cells, but data on their functional significance are contradictory. We analysed the presence and alterations of TRPA1 in comparison with TRP Vanilloid 1 (TRPV1) at mRNA and protein levels in human and mouse intact and inflamed colons. The role of TRPA1 in a colitis model was investigated using gene-deficient mice. TRPA1 and TRPV1 expressions were investigated in human colon biopsies of healthy subjects and patients with inflammatory bowel diseases (IBD: ulcerative colitis, Crohn's disease) with quantitative PCR and immunohistochemistry. Mouse colitis was induced by oral 2% dextran-sulphate (DSS) for 10 days. For investigating the functions of TRPA1, Disease Activity Index (weight loss, stool consistency, blood content) was determined in C57BL/6-based Trpa1-deficient (knockout: KO) and wildtype (WT) mice. Sensory neuropeptides, their receptors, and inflammatory cytokines/chemokines were determined with qPCR or Luminex. In human and mouse colons TRPA1 and TRPV1 are located on epithelial cells, macrophages, enteric ganglia. Significant upregulation of TRPA1 mRNA was detected in inflamed samples. In Trpa1 KO mice, Disease Activity Index was significantly higher compared to WTs. It could be explained by the greater levels of substance P, neurokinins A and B, neurokinin 1 receptor, pituitary adenylate-cyclase activating polypeptide, vasoactive intestinal polypeptide, and also interleukin-1beta, macrophage chemoattractant protein-1, monokine induced by gamma interferon-1, tumor necrosis factor-alpha and B-lymphocyte chemoattractant in the distal colon. TRPA1 is upregulated in colitis and its activation exerts protective roles by decreasing the expressions of several proinflammatory neuropeptides, cytokines and chemokines.


Asunto(s)
Canales de Calcio/fisiología , Colitis/fisiopatología , Proteínas del Tejido Nervioso/fisiología , Canales de Potencial de Receptor Transitorio/fisiología , Regulación hacia Arriba , Animales , Secuencia de Bases , Canales de Calcio/genética , Colitis/metabolismo , Colon/metabolismo , Cartilla de ADN , Expresión Génica , Humanos , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neuropéptidos/metabolismo , Reacción en Cadena de la Polimerasa , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA