Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am J Respir Cell Mol Biol ; 53(3): 355-67, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25569851

RESUMEN

Hypoxic pulmonary vasoconstriction (HPV) is an important physiological response that optimizes the ventilation/perfusion ratio. Chronic hypoxia causes vascular remodeling, which is central to the pathogenesis of hypoxia-induced pulmonary hypertension (HPH). We have previously shown that Notch3 is up-regulated in HPH and that activation of Notch signaling enhances store-operated Ca(2+) entry (SOCE), an important mechanism that contributes to pulmonary arterial smooth muscle cell (PASMC) proliferation and contraction. Here, we investigate the role of Notch signaling in HPV and hypoxia-induced enhancement of SOCE. We examined SOCE in human PASMCs exposed to hypoxia and pulmonary arterial pressure in mice using the isolated perfused/ventilated lung method. Wild-type and canonical transient receptor potential (TRPC) 6(-/-) mice were exposed to chronic hypoxia to induce HPH. Inhibition of Notch signaling with a γ-secretase inhibitor attenuates hypoxia-enhanced SOCE in PASMCs and hypoxia-induced increase in pulmonary arterial pressure. Our results demonstrate that hypoxia activates Notch signaling and up-regulates TRPC6 channels. Additionally, treatment with a Notch ligand can mimic hypoxic responses. Finally, inhibition of TRPC6, either pharmacologically or genetically, attenuates HPV, hypoxia-enhanced SOCE, and the development of HPH. These results demonstrate that hypoxia-induced activation of Notch signaling mediates HPV and the development of HPH via functional activation and up-regulation of TRPC6 channels. Understanding the molecular mechanisms that regulate cytosolic free Ca(2+) concentration and PASMC proliferation is critical to elucidation of the pathogenesis of HPH. Targeting Notch regulation of TRPC6 will be beneficial in the development of novel therapies for pulmonary hypertension associated with hypoxia.


Asunto(s)
Señalización del Calcio , Hipertensión Pulmonar/metabolismo , Receptor Notch1/metabolismo , Vasoconstricción , Animales , Proteínas de Unión al Calcio/metabolismo , Hipoxia de la Célula , Células Cultivadas , Humanos , Hipertensión Pulmonar/fisiopatología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiopatología , Proteínas Serrate-Jagged , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Canal Catiónico TRPC6
2.
Mol Carcinog ; 52 Suppl 1: E80-6, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23390063

RESUMEN

A single-nucleotide polymorphism (rs2274223: A5780G:His1927Arg) in the phospholipase C epsilon gene (PLCϵ) was recently identified as a susceptibility locus for esophageal cancer in Chinese subjects. To determine the underlying mechanisms of PLCϵ and this SNP in esophageal carcinogenesis, we analyzed PLCϵ genotypes, expression, and their correlation in esophageal cancer cell lines, non-transformed esophageal cells, 58 esophageal squamous cell carcinomas and 10,614 non-cancer subjects from China. We found that the G allele (AG or GG) was associated with increased PLCϵ mRNA and protein expression in esophageal cancer tissues and in esophageal cancer cell lines. G allele was also associated with higher enzyme activity, which might be associated with increased protein expression. Quantitative analysis of the C2 domain sequences revealed that A:G allelic imbalance was strongly linked to esophageal malignancy. Moreover, the analysis of 10,614 non-cancer subjects demonstrated that the G allele was strongly associated with moderate to severe esophagitis in the subjects from the high-incidence areas of China (OR 6.03, 95% CI 1.59-22.9 in high-incidence area vs. OR 0.74, 95% CI 0.33-1.64 in low-incidence area; P = 0.008). In conclusion, the PLCϵ gene, particularly the 5780G allele, might play a pivotal role in esophageal carcinogenesis via upregulating PLCϵ mRNA, protein, and enzyme activity, and augmenting inflammatory process in esophageal epithelium. Thus, 5780G allele may constitute a promising biomarker for esophageal squamous cell carcinoma risk stratification, early detection, and progression prediction.


Asunto(s)
Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Esofagitis/genética , Fosfoinositido Fosfolipasa C/genética , Polimorfismo de Nucleótido Simple/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/patología , Estudios de Casos y Controles , Neoplasias Esofágicas/enzimología , Neoplasias Esofágicas/patología , Esofagitis/enzimología , Esofagitis/patología , Genotipo , Humanos , Immunoblotting , Técnicas para Inmunoenzimas , Estadificación de Neoplasias , Fosfoinositido Fosfolipasa C/metabolismo , Reacción en Cadena de la Polimerasa , Pronóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Tumorales Cultivadas
3.
Carcinogenesis ; 33(2): 326-30, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22159220

RESUMEN

Previous studies have shown that decorin expression is significantly reduced in colorectal cancer tissues and cancer cells, and genetic deletion of the decorin gene is sufficient to cause intestinal tumor formation in mice, resulting from a downregulation of p21, p27(kip1) and E-cadherin and an upregulation of ß-catenin signaling [Bi,X. et al. (2008) Genetic deficiency of decorin causes intestinal tumor formation through disruption of intestinal cell maturation. Carcinogenesis, 29, 1435-1440]. However, the regulation of E-cadherin by decorin and its implication in cancer formation and metastasis is largely unknown. Using a decorin knockout mouse model (Dcn(-/-) mice) and manipulated expression of decorin in human colorectal cancer cells, we found that E-cadherin, a protein that regulates cell-cell adhesion, epithelial-mesenchymal transition and metastasis, was almost completely lost in Dcn(-/-) mouse intestine, and loss of decorin and E-cadherin accelerated colon cancer cell growth and invasion in Dcn(-/-) mice. However, increasing decorin expression in colorectal cancer cells attenuated cancer cell malignancy, including inhibition of cancer cell proliferation, promotion of apoptosis and importantly, attenuation of cancer cell migration. All these changes were linked to the regulation of E-cadherin by decorin. Moreover, overexpression of decorin upregulated E-cadherin through increasing of E-cadherin protein stability as E-cadherin messenger RNA and promoter activity were not affected. Co-immunoprecipitation assay showed a physical binding between decorin and E-cadherin proteins. Taken together, our results provide direct evidence that decorin-mediated inhibition of colorectal cancer growth and migration are through the interaction with and stabilization of E-cadherin.


Asunto(s)
Cadherinas/genética , Cadherinas/metabolismo , Movimiento Celular/fisiología , Neoplasias Colorrectales/metabolismo , Decorina/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Apoptosis/fisiología , Adhesión Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Línea Celular Transformada , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Decorina/genética , Transición Epitelial-Mesenquimal , Células HCT116 , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Invasividad Neoplásica , Metástasis de la Neoplasia , Regiones Promotoras Genéticas , Unión Proteica , ARN Mensajero/genética , Regulación hacia Arriba/genética
4.
Carcinogenesis ; 32(4): 584-8, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21183606

RESUMEN

A recent study has shown that c-Jun NH2-terminal kinases (JNKs) 2 interacts with and inhibits ß-catenin signaling in vitro. To determine the role of genetic interaction between JNK2 and ß-catenin in vivo and to elucidate JNK2-mediated intestinal carcinogenesis, we crossed the JNK2-/- mice with Apc1638+/- mice that carry inactivated Apc allele and develop intestinal tumor due to ß-catenin activation. We found that the introduction of mutant JNK2 into Apc1638+/- mice did not increase intestinal tumorigenesis when the mice were fed a defined AIN-76A control diet. However, loss of JNK2 significantly increased animal body weight in the Apc/JNK2+/- and Apc/JNK2-/- mice. Surprisingly, JNK2 loss was synergistic with a Western-style high-risk diet (high fat and phosphate and low calcium and vitamin D) to accelerate intestinal tumorigenesis. Tumor number increased to 3.56 from 1.89 (on AIN-76A diet) in the Apc/JNK2+/- mice (P<0.01) and increased to 4.14 from 1.92 (on AIN-76A diet) in the Apc/JNK2-/- mice (P<0.01) although there was a slight increase of tumor formation in Apc/JNK2+/+ mice. Intestinal tumorigenesis in Apc/JNK2 double-mutant mice with high-risk diet modulation was associated with ß-catenin signaling, peroxisome proliferator-activated receptor-γ and inflammation pathway. Collectively, we concluded that JNK2 may function in controlling fat metabolism and loss of JNK2 increases the risk of obesity, the latter synergizes with high-fat diet to increase intestinal tumor susceptibility. This data strongly suggests the importance of JNK2 in intestinal carcinogenesis and the importance of dietary manipulation for cancer prevention in the population whose JNK2 is inactivated.


Asunto(s)
Dieta , Genes APC , Neoplasias Intestinales/etiología , Proteína Quinasa 9 Activada por Mitógenos/fisiología , Animales , Peso Corporal , Susceptibilidad a Enfermedades , Inflamación/etiología , Ratones , PPAR gamma/análisis , PPAR gamma/genética , beta Catenina/fisiología
5.
Carcinogenesis ; 31(8): 1360-6, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20530237

RESUMEN

Selenium-binding protein (SBP) 1 is present in reduced levels in several cancer types as compared with normal tissues, and lower levels are associated with poor clinical prognosis. Another selenium-containing protein, glutathione peroxidase 1 (GPX1), has been associated with cancer risk and development. The interaction between these representatives of different classes of selenoproteins was investigated. Increasing SBP1 levels in either human colorectal or breast cancer cells by transfection of an expression construct resulted in the reduction of GPX1 enzyme activity. Increased expression of GPX1 in the same cell types resulted in the transcriptional and translational repression of SBP1, as evidenced by the reduction of SBP1 messenger RNA and protein and the inhibition of transcription measured using an SBP1 reporter construct. The opposing effects of SBP1 and GPX1 on each other were also observed when GPX1 was increased by supplementing the media of these tissue culture cells with selenium, and the effect of selenium on SBP1 was shown to be GPX1 dependent. Decreasing or increasing GPX1 levels in colonic epithelial cells of mice fed a selenium-deficient, -adequate or -supplemented diet resulted in the opposing effect on SBP1 levels. These data are explained in part by the demonstration that SBP1 and GPX1 form a physical association, as determined by coimmunoprecipitation and fluorescence resonance energy transfer assay. The results presented establish an interaction between two distinct selenium-containing proteins that may enhance the understanding of the mechanisms by which selenium and selenoproteins affect carcinogenesis in humans.


Asunto(s)
Glutatión Peroxidasa/genética , Proteínas de Unión al Selenio/metabolismo , Selenoproteínas/metabolismo , Alimentación Animal , Animales , Mapeo Cromosómico , Cromosomas Humanos Par 1 , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Cartilla de ADN , Regulación de la Expresión Génica , Glutatión Peroxidasa/metabolismo , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Cinética , Ratones , Ratones Endogámicos C57BL , Neoplasias/metabolismo , Neoplasias/patología , Plásmidos , Pronóstico , Regiones Promotoras Genéticas , Unión Proteica , Selenio/farmacología , Proteínas de Unión al Selenio/genética , Selenoproteínas/genética , Glutatión Peroxidasa GPX1
6.
PLoS One ; 4(11): e7774, 2009 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-19924303

RESUMEN

BACKGROUND: It has been shown that selenium-binding protein 1 (SBP1) is significantly downregulated in different human cancers. Its regulation and function have not yet been established. METHODOLOGY AND PRINCIPAL FINDINGS: We show that the SBP1 promoter is hypermethylated in colon cancer tissues and human colon cancer cells. Treatment with 5'-Aza-2'-deoxycytidine leads to demethylation of the SBP1 promoter and to an increase of SBP1 promoter activity, rescues SBP1 mRNA and protein expression in human colon cancer cells. Additionally, overexpression of SBP1 sensitizes colon cancer cells to H2O2-induced apoptosis, inhibits cancer cell migration in vitro and inhibits tumor growth in nude mice. CONCLUSION AND SIGNIFICANCE: These data demonstrate that SBP1 has tumor suppressor functions that are inhibited in colorectal cancer through epigenetic silencing.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al Selenio/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/genética , Neoplasias Colorrectales/genética , Metilación de ADN , Regulación hacia Abajo , Epigénesis Genética , Humanos , Técnicas In Vitro , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Regiones Promotoras Genéticas
7.
J Biol Chem ; 282(43): 31398-408, 2007 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-17724032

RESUMEN

p38 MAPK family consists of four isoform proteins (alpha, beta, gamma, and delta) that are activated by the same stimuli, but the information about how these proteins act together to yield a biological response is missing. Here we show a feed-forward mechanism by which p38alpha may regulate Ras transformation and stress response through depleting its family member p38gamma protein via c-Jun-dependent ubiquitin-proteasome pathways. Analyses of MAPK kinase 6 (MKK6)-p38 fusion proteins showed that constitutively active p38alpha (MKK6-p38alpha) and p38gamma (MKK6-p38gamma) stimulates and inhibits c-Jun phosphorylation respectively, leading to a distinct AP-1 regulation. Depending on cell type and/or stimuli, p38alpha phosphorylation results in either Ras-transformation inhibition or a cell-death escalation that invariably couples with a decrease in p38gamma protein expression. p38gamma, on the other hand, increases Ras-dependent growth or inhibits stress induced cell-death independent of phosphorylation. In cells expressing both proteins, p38alpha phosphorylation decreases p38gamma protein expression, whereas its inhibition increases cellular p38gamma concentrations, indicating an active role of p38alpha phosphorylation in negatively regulating p38gamma protein expression. Mechanistic analyses show that p38alpha requires c-Jun activation to deplete p38gamma proteins by ubiquitin-proteasome pathways. These results suggest that p38alpha may, upon phosphorylation, act as a gatekeeper of the p38 MAPK family to yield a coordinative biological response through disrupting its antagonistic p38gamma family protein.


Asunto(s)
Genes jun , Genes ras , Proteína Quinasa 12 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Estrés Fisiológico , Ubiquitina/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Embrión de Mamíferos , Femenino , Fibroblastos/metabolismo , Humanos , Inmunohistoquímica , Riñón/citología , Ratones , ARN Interferente Pequeño/metabolismo , Transfección
8.
J Biol Chem ; 282(3): 1544-51, 2007 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-17121851

RESUMEN

Vitamin D receptor (VDR) is a ligand-dependent transcription factor that mediates vitamin D(3)-induced gene expression. Our previous work has established that stress MAPK signaling stimulates VDR expression (Qi, X., Pramank, R., Wang, J., Schultz, R. M., Maitra, R. K., Han, J., DeLuca, H. F., and Chen, G. (2002) J. Biol. Chem. 277, 25884-25892) and VDR inhibits cell death in response to p38 MAPK activation (Qi, X., Tang, J., Pramanik, R., Schultz, R. M., Shirasawa, S., Sasazuki, T., Han, J., and Chen, G. (2004) J. Biol. Chem. 279, 22138-22144). Here we show that c-Jun is essential for VDR expression and VDR in turn inhibits c-Jun-dependent cell death by non-classical mechanisms. In response to stress c-Jun is recruited to the Vdr promoter before VDR protein expression is induced. The necessary and sufficient role of c-Jun in VDR expression was established by the fact that c-Jun knock-out decreases VDR expression, whereas c-Jun restoration recovers its activity. Existence of the non-classical VDR pathway was suggested by a requirement of both c-Jun and VDR in stress-induced VDR activity and further demonstrated by VDR inhibiting c-Jun-dependent cell death independent of its classical transcriptional activity and independent of vitamin D(3). c-Jun is also required for vitamin D(3)-induced classical VDR transcriptional activity by a mechanism likely involving physical interactions between c-Jun and VDR proteins. These results together reveal a non-classical mechanism by which VDR acts as a c-Jun/AP-1 target gene to modify c-Jun activity in stress response through increased protein expression independent of classical transcriptional regulations.


Asunto(s)
Proteínas Proto-Oncogénicas c-jun/metabolismo , Receptores de Calcitriol/química , Animales , Muerte Celular , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Humanos , Ratones , Modelos Biológicos , Células 3T3 NIH , Fosforilación , Receptores de Calcitriol/metabolismo , Transcripción Genética , Transfección , Vitamina D/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA