Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant Cell ; 33(11): 3402-3420, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34436604

RESUMEN

Plant RNA viruses form organized membrane-bound replication complexes to replicate their genomes. This process requires virus- and host-encoded proteins and leads to the production of double-stranded RNA (dsRNA) replication intermediates. Here, we describe the use of Arabidopsis thaliana expressing GFP-tagged dsRNA-binding protein (B2:GFP) to pull down dsRNA and associated proteins in planta upon infection with Tobacco rattle virus (TRV). Mass spectrometry analysis of the dsRNA-B2:GFP-bound proteins from infected plants revealed the presence of viral proteins and numerous host proteins. Among a selection of nine host candidate proteins, eight showed relocalization upon infection, and seven of these colocalized with B2-labeled TRV replication complexes. Infection of A. thaliana T-DNA mutant lines for eight such factors revealed that genetic knockout of dsRNA-BINDING PROTEIN 2 (DRB2) leads to increased TRV accumulation and DRB2 overexpression caused a decrease in the accumulation of four different plant RNA viruses, indicating that DRB2 has a potent and wide-ranging antiviral activity. We propose B2:GFP-mediated pull down of dsRNA to be a versatile method to explore virus replication complex proteomes and to discover key host virus replication factors. Given the universality of dsRNA, development of this tool holds great potential to investigate RNA viruses in other host organisms.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Interacciones Huésped-Patógeno , Defensa de la Planta contra la Herbivoria/genética , Virus de Plantas/fisiología , ARN Bicatenario/genética , ARN de Planta/genética , Proteínas de Unión al ARN/genética , Arabidopsis/virología , Proteínas de Arabidopsis/metabolismo , ARN Bicatenario/metabolismo , ARN de Planta/metabolismo , Proteínas de Unión al ARN/metabolismo , Replicación Viral
2.
Proc Natl Acad Sci U S A ; 117(20): 10848-10855, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32371486

RESUMEN

Grapevine fanleaf virus (GFLV) is a picorna-like plant virus transmitted by nematodes that affects vineyards worldwide. Nanobody (Nb)-mediated resistance against GFLV has been created recently, and shown to be highly effective in plants, including grapevine, but the underlying mechanism is unknown. Here we present the high-resolution cryo electron microscopy structure of the GFLV-Nb23 complex, which provides the basis for molecular recognition by the Nb. The structure reveals a composite binding site bridging over three domains of one capsid protein (CP) monomer. The structure provides a precise mapping of the Nb23 epitope on the GFLV capsid in which the antigen loop is accommodated through an induced-fit mechanism. Moreover, we uncover and characterize several resistance-breaking GFLV isolates with amino acids mapping within this epitope, including C-terminal extensions of the CP, which would sterically interfere with Nb binding. Escape variants with such extended CP fail to be transmitted by nematodes linking Nb-mediated resistance to vector transmission. Together, these data provide insights into the molecular mechanism of Nb23-mediated recognition of GFLV and of virus resistance loss.


Asunto(s)
Nepovirus/efectos de los fármacos , Enfermedades de las Plantas/inmunología , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/farmacología , Animales , Anticuerpos Antivirales/inmunología , Cápside/química , Proteínas de la Cápside/química , Proteínas de la Cápside/efectos de los fármacos , Microscopía por Crioelectrón , Epítopos/química , Modelos Moleculares , Nematodos/virología , Nepovirus/ultraestructura , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , Virus de Plantas/inmunología , Virus de Plantas/fisiología , Conformación Proteica , Vitis
3.
Biomol NMR Assign ; 13(2): 345-348, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31346897

RESUMEN

RNA silencing describes a pan-eukaryotic pathway of gene regulation where doubled stranded RNA are processed by the RNAse III enzyme Dicer or homologs. In particular, plants use it as a way to defend themselves against pathogen invasions. In turn, to evade the plant immune response, viruses have developed anti-RNA silencing mechanisms. They may indeed code for proteins called "viral suppressor of RNA silencing" which block the degrading of viral genomic or messenger RNA by the plant. The Rice Mottle Virus is an African virus of the sobemovirus family, which attacks the most productive rice varieties cultivated on this continent. It encodes P1, a cysteine-rich protein described as a potential RNA silencing suppressor. P1 is a 157 amino-acid long protein, characterized by a high propensity to aggregate concomitant with a limited stability with time in the conditions used in structural studies. To overcome this problem, shorter fragments were also studied. This strategy enabled the assignment of more than 90% backbone resonances of P1. This assignment should set the base of future NMR investigation of the protein structure and of its interactions with rice cellular partners.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Virus de Plantas , Proteínas Virales/química
4.
Front Plant Sci ; 9: 70, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29449856

RESUMEN

Double-stranded RNA (dsRNA) plays essential functions in many biological processes, including the activation of innate immune responses and RNA interference. dsRNA also represents the genetic entity of some viruses and is a hallmark of infections by positive-sense single-stranded RNA viruses. Methods for detecting dsRNA rely essentially on immunological approaches and their use is often limited to in vitro applications, although recent developments have allowed the visualization of dsRNA in vivo. Here, we report the sensitive and rapid detection of long dsRNA both in vitro and in vivo using the dsRNA binding domain of the B2 protein from Flock house virus. In vitro, we adapted the system for the detection of dsRNA either enzymatically by northwestern blotting or by direct fluorescence labeling on fixed samples. In vivo, we produced stable transgenic Nicotiana benthamiana lines allowing the visualization of dsRNA by fluorescence microscopy. Using these techniques, we were able to discriminate healthy and positive-sense single-stranded RNA virus-infected material in plants and insect cells. In N. benthamiana, our system proved to be very potent for the spatio-temporal visualization of replicative RNA intermediates of a broad range of positive-sense RNA viruses, including high- vs. low-copy number viruses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA