Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Immunother Cancer ; 12(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754915

RESUMEN

BACKGROUND: Allogeneic hematopoietic stem cell transplantation (HSCT) remains the standard of care for chemotherapy-refractory leukemia patients, but cure rates are still dismal. To prevent leukemia relapse following HSCT, we aim to improve the early graft-versus-leukemia effect mediated by natural killer (NK) cells. Our approach is based on the adoptive transfer of Therapeutic Inducers of Natural Killer cell Killing (ThINKK). ThINKK are expanded and differentiated from HSC, and exhibit blood plasmacytoid dendritic cell (pDC) features. We previously demonstrated that ThINKK stimulate NK cells and control acute lymphoblastic leukemia (ALL) development in a preclinical mouse model of HSCT for ALL. Here, we assessed the cellular identity of ThINKK and investigated their potential to activate allogeneic T cells. We finally evaluated the effect of immunosuppressive drugs on ThINKK-NK cell interaction. METHODS: ThINKK cellular identity was explored using single-cell RNA sequencing and flow cytometry. Their T-cell activating potential was investigated by coculture of allogeneic T cells and antigen-presenting cells in the presence or the absence of ThINKK. A preclinical human-to-mouse xenograft model was used to evaluate the impact of ThINKK injections on graft-versus-host disease (GvHD). Finally, the effect of immunosuppressive drugs on ThINKK-induced NK cell cytotoxicity against ALL cells was tested. RESULTS: The large majority of ThINKK shared the key characteristics of canonical blood pDC, including potent type-I interferon (IFN) production following Toll-like receptor stimulation. A minor subset expressed some, although not all, markers of other dendritic cell populations. Importantly, while ThINKK were not killed by allogeneic T or NK cells, they did not increase T cell proliferation induced by antigen-presenting cells nor worsened GvHD in vivo. Finally, tacrolimus, sirolimus or mycophenolate did not decrease ThINKK-induced NK cell activation and cytotoxicity. CONCLUSION: Our results indicate that ThINKK are type I IFN producing cells with low T cell activation capacity. Therefore, ThINKK adoptive immunotherapy is not expected to increase the risk of GvHD after allogeneic HSCT. Furthermore, our data predict that the use of tacrolimus, sirolimus or mycophenolate as anti-GvHD prophylaxis regimen will not decrease ThINKK therapeutic efficacy. Collectively, these preclinical data support the testing of ThINKK immunotherapy in a phase I clinical trial.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Asesinas Naturales , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Humanos , Trasplante de Células Madre Hematopoyéticas/métodos , Animales , Ratones , Trasplante Homólogo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Enfermedad Injerto contra Huésped/prevención & control
2.
Blood ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38518105

RESUMEN

Acute lymphoblastic leukemia (ALL) arises from the uncontrolled proliferation of precursor B or T cells (BCP- or T-ALL). Current treatment protocols obtain high cure rates in children but are based on toxic polychemotherapy. Novel therapies are urgently needed, especially in relapsed/refractory (r/r) disease, high-risk leukemias and T-ALL, where immunotherapy approaches remain scarce. While the Interleukin-7 receptor (IL-7R) plays a pivotal role in ALL development, no IL-7R-targeting immunotherapy has yet reached clinical application in ALL. The IL-7Rα chain (CD127)-targeting IgG4 antibody Lusvertikimab (formerly OSE-127) is a full antagonist of the IL-7R pathway showing a good safety profile in healthy volunteers. Here, we show that ~85% of ALL cases express surface CD127. We demonstrate significant in vivo efficacy of Lusvertikimab immunotherapy in a heterogeneous cohort of BCP- and T-ALL patient-derived xenografts (PDX) in minimal residual disease (MRD) and overt leukemia models, including r/r and high-risk leukemias. Importantly, Lusvertikimab was particularly effective when combined with polychemotherapy in a phase 2-like PDX study with CD127high samples leading to MRD-negativity in >50% of mice treated with combination therapy. Mechanistically, Lusvertikimab targeted ALL cells via a dual mode of action comprising direct IL-7R antagonistic activity and induction of macrophage-mediated antibody-dependent cellular phagocytosis (ADCP). Lusvertikimab-mediated in vitro ADCP levels significantly correlated with CD127 expression levels and the reduction of leukemia burden upon treatment of PDX animals in vivo. Altogether, through its dual mode of action and good safety profile, Lusvertikimab may represent a novel immunotherapy option for any CD127-positive ALL, particularly in combination with standard-of-care polychemotherapy.

3.
J Agric Food Chem ; 72(11): 5887-5897, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38441878

RESUMEN

Glutathione transferases are xenobiotic-metabolizing enzymes with both glutathione-conjugation and ligandin roles. GSTs are present in chemosensory tissues and fluids of the nasal/oral cavities where they protect tissues from exogenous compounds, including food molecules. In the present study, we explored the presence of the omega-class glutathione transferase (GSTO1) in the rat oral cavity. Using immunohistochemistry, GSTO1 expression was found in taste bud cells of the tongue epithelium and buccal cells of the oral epithelium. Buccal and lingual extracts exhibited thiol-transferase activity (4.9 ± 0.1 and 1.8 ± 0.1 µM/s/mg, respectively). A slight reduction from 4.9 ± 0.1 to 4.2 ± 0.1 µM/s/mg (p < 0.05; Student's t test) was observed in the buccal extract with 100 µM GSTO1-IN-1, a specific inhibitor of GSTO1. RnGSTO1 exhibited the usual activities of omega GSTs, i.e., thiol-transferase (catalytic efficiency of 8.9 × 104 M-1·s-1), and phenacyl-glutathione reductase (catalytic efficiency of 8.9 × 105 M-1·s-1) activities, similar to human GSTO1. RnGSTO1 interacts with food phytochemicals, including bitter compounds such as luteolin (Ki = 3.3 ± 1.9 µM). Crystal structure analysis suggests that luteolin most probably binds to RnGSTO1 ligandin site. Our results suggest that GSTO1 could interact with food phytochemicals in the oral cavity.


Asunto(s)
Glutatión Transferasa , Luteolina , Ratas , Animales , Humanos , Glutatión Transferasa/metabolismo , Mucosa Bucal/metabolismo , Compuestos de Sulfhidrilo , Glutatión/metabolismo
4.
J Immunol ; 212(7): 1178-1187, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38353642

RESUMEN

The inflammatory response is a key mechanism for the elimination of injurious agents but must be tightly controlled to prevent additional tissue damage and progression to persistent inflammation. C-type lectin receptors expressed mostly by myeloid cells play a crucial role in the regulation of inflammation by recognizing molecular patterns released by injured tissues. We recently showed that the C-type lectin receptor CLEC-1 is able to recognize necrotic cells. However, its role in the acute inflammatory response following tissue damage had not yet been investigated. We show in this study, in a mouse model of liver injury induced by acetaminophen intoxication, that Clec1a deficiency enhances the acute immune response with increased expression of Il1b, Tnfa, and Cxcl2 and higher infiltration of activated neutrophils into the injured organ. Furthermore, we demonstrate that Clec1a deficiency exacerbates tissue damage via CXCL2-dependent neutrophil infiltration. In contrast, we observed that the lack of CLEC-1 limits CCL2 expression and the accumulation, beyond the peak of injury, of monocyte-derived macrophages. Mechanistically, we found that Clec1a-deficient dendritic cells increase the expression of Il1b, Tnfa, and Cxcl2 in response to necrotic cells, but decrease the expression of Ccl2. Interestingly, treatment with an anti-human CLEC-1 antagonist mAb recapitulates the exacerbation of acute immunopathology observed by genetic loss of Clec1a in a preclinical humanized mouse model. To conclude, our results demonstrate that CLEC-1 is a death receptor limiting the acute inflammatory response following injury and represents a therapeutic target to modulate immunity.


Asunto(s)
Inflamación , Neutrófilos , Ratones , Animales , Células Mieloides , Macrófagos , Hígado/metabolismo , Lectinas Tipo C/metabolismo
5.
Front Immunol ; 14: 1196731, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37539056

RESUMEN

Introduction: Tumor Associated Macrophages (TAM) are a major component of the tumor environment and their accumulation often correlates with poor prognosis by contributing to local inflammation, inhibition of anti-tumor immune response and resistance to anticancer treatments. In this study, we thus investigated the anti-cancer therapeutic interest to target ChemR23, a receptor of the resolution of inflammation expressed by macrophages, using an agonist monoclonal antibody, αChemR23. Methods: Human GM-CSF, M-CSF and Tumor Associated Macrophage (TAM)-like macrophages were obtained by incubation of monocytes from healthy donors with GM-CSF, M-CSF or tumor cell supernatants (Breast cancer (BC) or malignant pleural mesothelioma (MPM) cells). The effects of αChemR23 on macrophages were studied at the transcriptomic, protein and functional level. Datasets from The Cancer Genome Atlas (TCGA) were used to study CMKLR1 expression, coding for ChemR23, in BC and MPM tumors. In vivo, αChemR23 was evaluated on overall survival, metastasis development and transcriptomic modification of the metastatic niche using a model of resected triple negative breast cancer. Results: We show that ChemR23 is expressed at higher levels in M-CSF and tumor cell supernatant differentiated macrophages (TAM-like) than in GM-CSF-differentiated macrophages. ChemR23 activation triggered by αChemR23 deeply modulates M-CSF and TAM-like macrophages including profile of cell surface markers, cytokine secretion, gene mRNA expression and immune functions. The expression of ChemR23 coding gene (CMKLR1) strongly correlates to TAM markers in human BC tumors and MPM and its histological detection in these tumors mainly corresponds to TAM expression. In vivo, treatment with αChemR23 agonist increased mouse survival and decreased metastasis occurrence in a model of triple-negative BC in correlation with modulation of TAM phenotype in the metastatic niche. Conclusion: These results open an attractive opportunity to target TAM and the resolution of inflammation pathways through ChemR23 to circumvent TAM pro-tumoral effects.


Asunto(s)
Neoplasias de la Mama , Carcinoma , Receptores de Quimiocina , Animales , Femenino , Humanos , Ratones , Carcinoma/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Inflamación/metabolismo , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos , Fenotipo , Receptores de Quimiocina/metabolismo
6.
MAbs ; 15(1): 2211692, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37184206

RESUMEN

The annual "Antibody Industrial Symposium", co-organized by LabEx MAbImprove and MabDesign, held its 10th anniversary edition in Montpellier, France, on June 28-29, 2022. The meeting focused on new results and concepts in antibody engineering (naked, mono- or multi-specific, conjugated to drugs or radioelements) and also on new cell-based therapies, such as chimeric antigenic receptor (CAR)-T cells. The symposium, which brought together scientists from academia and industry, also addressed issues concerning the production of these molecules and cells, and the necessary steps to ensure a strong intellectual property protection of these new molecules and approaches. These two days of exchanges allowed a rich discussion among the various actors in the field of therapeutic antibodies.


Asunto(s)
Anticuerpos Monoclonales , Inmunoterapia Adoptiva , Anticuerpos Monoclonales/uso terapéutico , Francia
7.
Sci Adv ; 8(46): eabo7621, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36399563

RESUMEN

Tumors exploit numerous immune checkpoints, including those deployed by myeloid cells to curtail antitumor immunity. Here, we show that the C-type lectin receptor CLEC-1 expressed by myeloid cells senses dead cells killed by programmed necrosis. Moreover, we identified Tripartite Motif Containing 21 (TRIM21) as an endogenous ligand overexpressed in various cancers. We observed that the combination of CLEC-1 blockade with chemotherapy prolonged mouse survival in tumor models. Loss of CLEC-1 reduced the accumulation of immunosuppressive myeloid cells in tumors and invigorated the activation state of dendritic cells (DCs), thereby increasing T cell responses. Mechanistically, we found that the absence of CLEC-1 increased the cross-presentation of dead cell-associated antigens by conventional type-1 DCs. We identified antihuman CLEC-1 antagonist antibodies able to enhance antitumor immunity in CLEC-1 humanized mice. Together, our results demonstrate that CLEC-1 acts as an immune checkpoint in myeloid cells and support CLEC-1 as a novel target for cancer immunotherapy.


Asunto(s)
Reactividad Cruzada , Neoplasias , Ratones , Animales , Presentación de Antígeno , Inmunoterapia , Células Dendríticas , Neoplasias/terapia
8.
Cell Death Discov ; 8(1): 94, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241649

RESUMEN

The BAG3- and SIRPα- mediated pathways trigger distinct cellular targets and signaling mechanisms in pancreatic cancer microenvironment. To explore their functional connection, we investigated the effects of their combined blockade on cancer growth in orthotopic allografts of pancreatic cancer mt4-2D cells in immunocompetent mice. The anti-BAG3 + anti-SIRPα mAbs treatment inhibited (p = 0.007) tumor growth by about the 70%; also the number of metastatic lesions was decreased, mostly by the effect of the anti-BAG3 mAb. Fibrosis and the expression of the CAF activation marker α-SMA were reduced by about the 30% in animals treated with anti-BAG3 mAb compared to untreated animals, and appeared unaffected by treatment with the anti-SIRPα mAb alone; however, the addition of anti-SIRPα to anti-BAG3 mAb in the combined treatment resulted in a > 60% (p < 0.0001) reduction of the fibrotic area and a 70% (p < 0.0001) inhibition of CAF α-SMA positivity. Dendritic cells (DCs) and CD8+ lymphocytes, hardly detectable in the tumors of untreated animals, were modestly increased by single treatments, while were much more clearly observable (p < 0.0001) in the tumors of the animals subjected to the combined treatment. The effects of BAG3 and SIRPα blockade do not simply reflect the sum of the effects of the single blockades, indicating that the two pathways are connected by regulatory interactions and suggesting, as a proof of principle, the potential therapeutic efficacy of a combined BAG3 and SIRPα blockade in pancreatic cancer.

9.
Front Immunol ; 12: 732530, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925315

RESUMEN

A numerous number of positive and negative signals via various molecules modulate T-cell activation. Within the various transmembrane proteins, SIRPγ is of interest since it is not expressed in rodents. SIRPγ interaction with CD47 is reevaluated in this study. Indeed, we show that the anti-SIRPγ mAb clone LSB2.20 previously used by others has not been appropriately characterized. We reveal that the anti-SIRPα clone KWAR23 is a Pan anti-SIRP mAb which efficiently blocks SIRPα and SIRPγ interactions with CD47. We show that SIRPγ expression on T cells varies with their differentiation and while being expressed on Tregs, is not implicated in their suppressive functions. SIRPγ spatial reorganization at the immune synapse is independent of its interaction with CD47. In vitro SIRPα-γ/CD47 blockade with KWAR23 impairs IFN-γ secretion by chronically activated T cells. In vivo in a xeno-GvHD model in NSG mice, the SIRPγ/CD47 blockade with the KWAR23 significantly delays the onset of the xeno-GvHD and deeply impairs human chimerism. In conclusion, we have shown that T-cell interaction with CD47 is of importance notably in chronic stimulation.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Antígeno CD47/metabolismo , Enfermedad Injerto contra Huésped/inmunología , Activación de Linfocitos/efectos de los fármacos , Muromonab-CD3/administración & dosificación , Receptores Inmunológicos/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T/inmunología , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/inmunología , Donantes de Sangre , Antígeno CD47/genética , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Voluntarios Sanos , Xenoinjertos , Humanos , Células Jurkat , Activación de Linfocitos/genética , Masculino , Ratones , Muromonab-CD3/inmunología , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Transducción de Señal/genética
10.
Front Immunol ; 12: 702785, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276698

RESUMEN

Inflammation is a fundamental physiological response orchestrated by innate immune cells to restore tissue homeostasis. Specialized pro-resolving mediators (SPMs) are involved in active resolution of inflammation but when inflammation is incomplete, chronic inflammation creates a favorable environment that fuels carcinogenesis and cancer progression. Conventional cancer therapy also strengthens cancer-related inflammation by inducing massive tumor cell death that activate surrounding immune-infiltrating cells such as tumor-associated macrophages (TAMs). Macrophages are key actors of both inflammation and its active resolution due to their plastic phenotype. In line with this high plasticity, macrophages can be hijacked by cancer cells to support tumor progression and immune escape, or therapy resistance. Impaired resolution of cancer-associated inflammation supported by TAMs may thus reinforces tumor progression. From this perspective, recent evidence suggests that stimulating macrophage's pro-resolving functions using SPMs can promote inflammation resolution in cancer and improve anticancer treatments. Thus, TAMs' re-education toward an antitumor phenotype by using SPMs opens a new line of attack in cancer treatment. Here, we review SPMs' anticancer capacities with special attention regarding their effects on TAMs. We further discuss how this new therapeutic approach could be envisioned in cancer therapy.


Asunto(s)
Mediadores de Inflamación/inmunología , Inflamación/inmunología , Neoplasias/inmunología , Macrófagos Asociados a Tumores/inmunología , Animales , Humanos
11.
Arthritis Rheumatol ; 73(4): 631-640, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33058491

RESUMEN

OBJECTIVE: Primary Sjögren's syndrome (SS) is characterized by a lymphocytic infiltration of salivary glands (SGs) and the presence of an interferon (IFN) signature. SG epithelial cells (SGECs) play an active role in primary SS pathophysiology. We undertook this study to examine the interactions between SGECs and T cells in primary SS and the role of the interleukin-7 (IL-7)/IFN axis. METHODS: Primary cultured SGECs from control subjects and patients with primary SS were stimulated with poly(I-C), IFNα, or IFNγ. T cells were sorted from blood and stimulated with IL-7. CD25 expression was assessed by flow cytometry. SG explants were cultured for 4 days with anti-IL-7 receptor (IL-7R) antagonist antibody (OSE-127), and transcriptomic analysis was performed using the NanoString platform. RESULTS: Serum IL-7 level was increased in patients with primary SS compared to controls and was associated with B cell biomarkers. IL7R expression was decreased in T cells from patients with primary SS compared to controls. SGECs stimulated with poly(I-C), IFNα, or IFNγ secreted IL-7. IL-7 stimulation increased the activation of T cells, as well as IFNγ secretion. Transcriptomic analysis of SG explants showed a correlation between IL7 and IFN expression. Finally, explants cultured with anti-IL-7R antibody showed decreased IFN-stimulated gene expression. CONCLUSION: These results suggest the presence of an IL-7/IFNγ amplification loop involving SGECs and T cells in primary SS. IL-7 was secreted by SGECs stimulated with type I or type II IFN and, in turn, activated T cells that secrete type II IFN. An anti-IL-7R antibody decreased the IFN signature in T cells in primary SS and could be of therapeutic interest.


Asunto(s)
Células Epiteliales/metabolismo , Interferón-alfa/farmacología , Interferón gamma/farmacología , Interleucina-7/farmacología , Glándulas Salivales/metabolismo , Síndrome de Sjögren/metabolismo , Linfocitos T/metabolismo , Adulto , Anciano , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Femenino , Humanos , Subunidad alfa del Receptor de Interleucina-7/inmunología , Masculino , Persona de Mediana Edad , Glándulas Salivales/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Linfocitos T/efectos de los fármacos
12.
J Clin Invest ; 130(11): 6109-6123, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33074246

RESUMEN

T cell exclusion causes resistance to cancer immunotherapies via immune checkpoint blockade (ICB). Myeloid cells contribute to resistance by expressing signal regulatory protein-α (SIRPα), an inhibitory membrane receptor that interacts with ubiquitous receptor CD47 to control macrophage phagocytosis in the tumor microenvironment. Although CD47/SIRPα-targeting drugs have been assessed in preclinical models, the therapeutic benefit of selectively blocking SIRPα, and not SIRPγ/CD47, in humans remains unknown. We report a potent synergy between selective SIRPα blockade and ICB in increasing memory T cell responses and reverting exclusion in syngeneic and orthotopic tumor models. Selective SIRPα blockade stimulated tumor nest T cell recruitment by restoring murine and human macrophage chemokine secretion and increased anti-tumor T cell responses by promoting tumor-antigen crosspresentation by dendritic cells. However, nonselective SIRPα/SIRPγ blockade targeting CD47 impaired human T cell activation, proliferation, and endothelial transmigration. Selective SIRPα inhibition opens an attractive avenue to overcoming ICB resistance in patients with elevated myeloid cell infiltration in solid tumors.


Asunto(s)
Memoria Inmunológica , Inmunoterapia , Neoplasias Mamarias Experimentales/terapia , Proteínas de Neoplasias/inmunología , Receptores Inmunológicos/inmunología , Linfocitos T/inmunología , Animales , Femenino , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Proteínas de Neoplasias/genética , Receptores Inmunológicos/genética , Linfocitos T/patología
13.
Am J Transplant ; 19(12): 3263-3275, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31207067

RESUMEN

Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature hematopoietic precursors known to suppress immune responses. Interaction of SIRP alpha (SIRPα), expressed by myeloid cells, with the ubiquitous receptor CD47 is an important immune checkpoint of the innate response regulating macrophages and dendritic cells functions. We previously described that MDSC expressing SIRPα accumulated after transplantation and maintained kidney allograft tolerance. However, the role of the SIRPα/CD47 axis on MDSC function remained unknown. Here, we found that blocking SIRPα or CD47 with monoclonal antibodies (mAbs) induced differentiation of MDSC into myeloid cells overexpressing MHC class II, CD86 costimulatory molecule and increased secretion of macrophage-recruiting chemokines (eg, MCP-1). Using a model of long-term kidney allograft tolerance sustained by MDSC, we observed that administration of blocking anti-SIRPα or CD47 mAbs induced graft dysfunction and rejection. Loss of tolerance came along with significant decrease of MDSC and increase in MCP-1 concentration in the periphery. Graft histological and transcriptomic analyses revealed an inflammatory (M1) macrophagic signature at rejection associated with overexpression of MCP-1 mRNA and protein in the graft. These findings indicate that the SIRPα-CD47 axis regulates the immature phenotype and chemokine secretion of MDSC and contributes to the induction and the active maintenance of peripheral acquired immune tolerance.


Asunto(s)
Antígeno CD47/metabolismo , Rechazo de Injerto/inmunología , Trasplante de Riñón/efectos adversos , Células Mieloides/inmunología , Células Supresoras de Origen Mieloide/inmunología , Receptores Inmunológicos/metabolismo , Tolerancia al Trasplante/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Antígeno CD47/antagonistas & inhibidores , Antígeno CD47/inmunología , Quimiocinas , Rechazo de Injerto/patología , Supervivencia de Injerto/inmunología , Células Mieloides/citología , Ratas , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/inmunología
14.
J Clin Invest ; 129(5): 1910-1925, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30939120

RESUMEN

It remains unknown what causes inflammatory bowel disease (IBD), including signaling networks perpetuating chronic gastrointestinal inflammation in Crohn's disease (CD) and ulcerative colitis (UC), in humans. According to an analysis of up to 500 patients with IBD and 100 controls, we report that key transcripts of the IL-7 receptor (IL-7R) pathway are accumulated in inflamed colon tissues of severe CD and UC patients not responding to either immunosuppressive/corticosteroid, anti-TNF, or anti-α4ß7 therapies. High expression of both IL7R and IL-7R signaling signature in the colon before treatment is strongly associated with nonresponsiveness to anti-TNF therapy. While in mice IL-7 is known to play a role in systemic inflammation, we found that in humans IL-7 also controlled α4ß7 integrin expression and imprinted gut-homing specificity on T cells. IL-7R blockade reduced human T cell homing to the gut and colonic inflammation in vivo in humanized mouse models, and altered effector T cells in colon explants from UC patients grown ex vivo. Our findings show that failure of current treatments for CD and UC is strongly associated with an overexpressed IL-7R signaling pathway and point to IL-7R as a relevant therapeutic target and potential biomarker to fill an unmet need in clinical IBD detection and treatment.


Asunto(s)
Colitis Ulcerosa/metabolismo , Colon/metabolismo , Enfermedad de Crohn/metabolismo , Receptores de Interleucina-7/metabolismo , Linfocitos T/citología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Adolescente , Adulto , Anciano , Animales , Colon/patología , Citocinas/metabolismo , Endoscopía , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Enfermedad Injerto contra Huésped/metabolismo , Humanos , Inflamación , Integrinas/metabolismo , Mucosa Intestinal/metabolismo , Leucocitos Mononucleares/citología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Transducción de Señal , Adulto Joven
15.
Orthop Traumatol Surg Res ; 105(1): 55-61, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30573397

RESUMEN

BACKGROUND: In computer-assisted orthopedic surgery, the hip center (HC) can be determined by calculating the center of rotation of the femur in relation to the pelvis. Several methods are available: Gamage, Halvorsen, Pivot or Least-Moving Point (LMP). To our knowledge, no studies have compared these four methods. We therefore conducted in silico and in vitro experiments to assess whether their accuracy and precision in locating the HC and calculating the hip-knee-ankle (HKA) angle were equivalent. HYPOTHESIS: The four methods show similar accuracy and precision. PATIENTS AND METHODS: The in silico experiment assessed the independent influence of four parameters (camera noise, acetabular noise, movement amplitude, and number of circumductions) on accuracy. The accuracy and precision of the four methods and the impact on HKA ankle calculation were assessed in an in vitro study on six cadaver limbs. RESULTS: In the in silico experiment, all differences according to method were significant (p<0.0002). The Pivot method was the most accurate for acetabular and camera noise, number of circumductions, and movement amplitude. With the LMP, Pivot, Gamage and Halvorsen methods, error was respectively 23.07±8.40 (range 2.10-54.67) mm, 1.98±081 (0.15-4.89) mm, 28.18±3.42 (18.57-37.60) mm and 2.84±1.46 (0.11-9.44) mm depending on camera noise, 1.65±0.72 (0.13-4.80) mm, 0.52±0.22 (0.05-1.23) mm, 3.02±0.57 (0.60-4.78) mm and 0.61±0.27 (0.04-1.82) mm depending on movement amplitude, 0.50±0.20 (0.05-1.34) mm, 0.18±0.08 (0.01-0.44) mm, 0.36±0.14 (0.03-0.80) mm and 0.21±0.09 (0.01-0.55) mm depending on number of circumductions, and 11.30±5.77 (0.56-37.87) mm, 2.78±1.47 (0.10-8.77) mm, 88.08±8.85 (60.59-117.79) mm and 24.33±9.82 (1.40-66.17) mm depending on acetabular noise. In the in vitro experiment, differences were non-significant between the Pivot and LMP methods (p>0.98) and between the Gamage and Halvorsen methods (p>0.65). With the LMP, Pivot, Gamage and Halvorsen methods, precision was respectively 8.2±4.6 (3.3-23.6) mm, 7.3±3.6 (3.4-14.1) mm, 33.6±19.1 (4.7-111.4) mm and 35.0±25.0 (4.7-132.5) mm. Accuracy was 13.5±8.2 (3.2-40.7) mm. 12.3±6.4 (3.2-23.6) mm, 47.0±33.3 (6.2-176.6) mm and 40.3±27.8 (6.1-130.3) mm. The LMP and Pivot methods were thus more accurate and more precise than the Gamage and Halvorsen methods. HKA angle error was 1.1±0.9° (0.1-3.7) and 0.9±0.8° (0.0-2.5) with the LMP and Pivot methods, and 3.2±2.7° (0.0-12.7) and 3.8±3.5° (0.0-13.3) with the Gamage and Halvorsen methods. DISCUSSION: The study highlighted differences between the four methods of HC location in computer-assisted surgery; the Pivot method was the most accurate and precise, thus falsifying the study hypothesis. LEVEL OF EVIDENCE: III, prospective comparative in silico and in vitro study.


Asunto(s)
Articulación del Tobillo/diagnóstico por imagen , Artroplastia de Reemplazo de Cadera/métodos , Articulación de la Cadera/diagnóstico por imagen , Articulación de la Rodilla/diagnóstico por imagen , Cirugía Asistida por Computador/métodos , Cadáver , Humanos , Estudios Prospectivos
16.
J Clin Invest ; 128(9): 3991-4007, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-30102255

RESUMEN

Controlling graft-versus-host disease (GVHD) remains a major unmet need in stem cell transplantation, and new, targeted therapies are being actively developed. CD28-CD80/86 costimulation blockade represents a promising strategy, but targeting CD80/CD86 with CTLA4-Ig may be associated with undesired blockade of coinhibitory pathways. In contrast, targeted blockade of CD28 exclusively inhibits T cell costimulation and may more potently prevent GVHD. Here, we investigated FR104, an antagonistic CD28-specific pegylated-Fab', in the nonhuman primate (NHP) GVHD model and completed a multiparameter interrogation comparing it with CTLA4-Ig, with and without sirolimus, including clinical, histopathologic, flow cytometric, and transcriptomic analyses. We document that FR104 monoprophylaxis and combined prophylaxis with FR104/sirolimus led to enhanced control of effector T cell proliferation and activation compared with the use of CTLA4-Ig or CTLA4-Ig/sirolimus. Importantly, FR104/sirolimus did not lead to a beneficial impact on Treg reconstitution or homeostasis, consistent with control of conventional T cell activation and IL-2 production needed to support Tregs. While FR104/sirolimus had a salutary effect on GVHD-free survival, overall survival was not improved, due to death in the absence of GVHD in several FR104/sirolimus recipients in the setting of sepsis and a paralyzed INF-γ response. These results therefore suggest that effectively deploying CD28 in the clinic will require close scrutiny of both the benefits and risks of extensively abrogating conventional T cell activation after transplant.


Asunto(s)
Antígenos CD28/antagonistas & inhibidores , Enfermedad Injerto contra Huésped/prevención & control , Linfocitos T/inmunología , Abatacept/administración & dosificación , Animales , Anticuerpos Monoclonales/administración & dosificación , Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped/inmunología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Activación de Linfocitos , Macaca mulatta , Sirolimus/administración & dosificación , Biología de Sistemas
17.
Chem Senses ; 43(8): 635-643, 2018 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-30137256

RESUMEN

Gurmarin is a highly specific sweet taste-suppressing protein in rodents that is isolated from the Indian plant Gymnema sylvestre. Gurmarin consists of 35 amino acid residues containing 3 intramolecular disulfide bridges that form a cystine knot. Here, we report the crystal structure of gurmarin at a 1.45 Å resolution and compare it with previously reported nuclear magnetic resonance solution structures. The atomic structure at this resolution allowed us to identify a very flexible region consisting of hydrophobic residues. Some of these amino acid residues had been identified as a putative binding site for the rat sweet taste receptor in a previous study. By combining alanine-scanning mutagenesis of the gurmarin molecule and a functional cell-based receptor assay, we confirmed that some single point mutations in these positions drastically affect sweet taste receptor inhibition by gurmarin.


Asunto(s)
Aminoácidos/química , Cristalografía por Rayos X/métodos , Proteínas de Plantas/química , Animales , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica , Ratas , Proteínas Recombinantes/química
19.
Sci Rep ; 6: 31455, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27530248

RESUMEN

BAC transgenic mammalian systems offer an important platform for recapitulating human gene expression and disease modeling. While the larger body mass, and greater genetic and physiologic similarity to humans render rats well suited for reproducing human immune diseases and evaluating therapeutic strategies, difficulties of generating BAC transgenic rats have hindered progress. Thus, an efficient method for BAC transgenesis in rats would be valuable. Immunodeficient mice carrying a human SIRPA transgene have previously been shown to support improved human cell hematopoiesis. Here, we have generated for the first time, human SIRPA BAC transgenic rats, for which the gene is faithfully expressed, functionally active, and germline transmissible. To do this, human SIRPA BAC was modified with elements to work in coordination with genome engineering technologies-piggyBac, CRISPR/Cas9 or TALEN. Our findings show that piggyBac transposition is a more efficient approach than the classical BAC transgenesis, resulting in complete BAC integration with predictable end sequences, thereby permitting precise assessment of the integration site. Neither CRISPR/Cas9 nor TALEN increased BAC transgenesis. Therefore, an efficient generation of human SIRPA transgenic rats using piggyBac opens opportunities for expansion of humanized transgenic rat models in the future to advance biomedical research and therapeutic applications.


Asunto(s)
Antígenos de Diferenciación , Sistemas CRISPR-Cas , Cromosomas Artificiales Bacterianos/genética , Receptores Inmunológicos , Transgenes , Cigoto , Animales , Antígenos de Diferenciación/biosíntesis , Antígenos de Diferenciación/genética , Humanos , Ratones , Ratones Transgénicos , Ratas , Ratas Transgénicas , Receptores Inmunológicos/biosíntesis , Receptores Inmunológicos/genética
20.
J Am Soc Nephrol ; 27(12): 3577-3588, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27160407

RESUMEN

Belatacept is a biologic that targets CD80/86 and prevents its interaction with CD28 and its alternative ligand, cytotoxic T lymphocyte antigen 4 (CTLA-4). Clinical experience in kidney transplantation has revealed a high incidence of rejection with belatacept, especially with intensive regimens, suggesting that blocking CTLA-4 is deleterious. We performed a head to head assessment of FR104 (n=5), a selective pegylated Fab' antibody fragment antagonist of CD28 that does not block the CTLA-4 pathway, and belatacept (n=5) in kidney allotransplantation in baboons. The biologics were supplemented with an initial 1-month treatment with low-dose tacrolimus. In cases of acute rejection, animals also received steroids. In the belatacept group, four of five recipients developed severe, steroid-resistant acute cellular rejection, whereas FR104-treated animals did not. Assessment of regulatory T cell-specific demethylated region methylation status in 1-month biopsy samples revealed a nonsignificant trend for higher regulatory T cell frequencies in FR104-treated animals. Transcriptional analysis did not reveal significant differences in Th17 cytokines but did reveal higher levels of IL-21, the main cytokine secreted by CD4 T follicular helper (Tfh) cells, in belatacept-treated animals. In vitro, FR104 controlled the proliferative response of human preexisting Tfh cells more efficiently than belatacept. In mice, selective CD28 blockade also controlled Tfh memory cell responses to KLH stimulation more efficiently than CD80/86 blockade. Our data reveal that selective CD28 blockade and belatacept exert different effects on mechanisms of renal allograft rejection, particularly at the level of Tfh cell stimulation.


Asunto(s)
Abatacept/farmacología , Anticuerpos/efectos de los fármacos , Anticuerpos/inmunología , Antígenos CD28/inmunología , Rechazo de Injerto/inmunología , Inmunosupresores/farmacología , Animales , Ratones , Papio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA