Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 288(2): L359-69, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15516490

RESUMEN

Previous studies demonstrated that neutrophil adherence induces ICAM-1-dependent cytoskeletal changes in TNF-alpha-treated pulmonary microvascular endothelial cells that are prevented by a pharmacological inhibitor of p38 MAP kinase. This study determined whether neutrophil adherence induces activation of p38 MAP kinase in endothelial cells, the subcellular localization of phosphorylated p38, which MAP kinase kinases lead to p38 activation, which p38 isoform is activated, and what the downstream targets may be. Confocal microscopy showed that neutrophil adhesion for 2 or 6 min induced an increase in phosphorylated p38 in endothelial cells that was punctate and concentrated in the central region of the endothelial cells. Studies using small interfering RNA (siRNA) to inhibit the protein expression of MAP kinase kinase 3 and 6, either singly or in combination, showed that both MAP kinase kinases were required for p38 phosphorylation. Studies using an antisense oligonucleotide to p38alpha demonstrated that inhibition of the protein expression of p38alpha 1) inhibited activation of p38 MAP kinase without affecting the protein expression of p38beta; 2) prevented phosphorylation of heat shock protein 27, an actin binding protein that may induce actin polymerization upon phosphorylation; 3) attenuated cytoskeletal changes; and 4) attenuated neutrophil migration to the EC borders. Thus MAP kinase kinase3- and 6-dependent activation of the alpha-isoform of p38 MAP kinase is required for the cytoskeletal changes induced by neutrophil adherence and influences subsequent neutrophil migration toward endothelial cell junctions.


Asunto(s)
Citoesqueleto/ultraestructura , Endotelio Vascular/metabolismo , Endotelio Vascular/ultraestructura , Molécula 1 de Adhesión Intercelular/metabolismo , Pulmón/irrigación sanguínea , MAP Quinasa Quinasa 3/metabolismo , MAP Quinasa Quinasa 6/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Actinas/química , Actinas/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Reactivos de Enlaces Cruzados/farmacología , Células Endoteliales/metabolismo , Proteínas de Choque Térmico HSP27 , Proteínas de Choque Térmico/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/efectos de los fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , Chaperonas Moleculares , Proteínas de Neoplasias/metabolismo , Neutrófilos/fisiología , Oligonucleótidos Antisentido/farmacología , Fosforilación/efectos de los fármacos , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/genética
2.
Diabetes ; 51(4): 1028-34, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11916922

RESUMEN

Signaling through the phosphatidylinositol 3'-kinase (PI3K) pathway is crucial for metabolic responses to insulin, and defects in PI3K signaling have been demonstrated in type 2 diabetes. PTEN (MMAC1) is a lipid/protein phosphatase that can negatively regulate the PI3K pathway by dephosphorylating phosphatidylinositol (3,4,5)-triphosphate, but it is unclear whether PTEN is physiologically relevant to insulin signaling in vivo. We employed an antisense oligonucleotide (ASO) strategy in an effort to specifically inhibit the expression of PTEN. Transfection of cells in culture with ASO targeting PTEN reduced PTEN mRNA and protein levels and increased insulin-stimulated Akt phosphorylation in alpha-mouse liver-12 (AML12) cells. Systemic administration of PTEN ASO once a week in mice suppressed PTEN mRNA and protein expression in liver and fat by up to 90 and 75%, respectively, and normalized blood glucose concentrations in db/db and ob/ob mice. Inhibition of PTEN expression also dramatically reduced insulin concentrations in ob/ob mice, improved the performance of db/db mice during insulin tolerance tests, and increased Akt phosphorylation in liver in response to insulin. These results suggest that PTEN plays a significant role in regulating glucose metabolism in vivo by negatively regulating insulin signaling.


Asunto(s)
Monoéster Fosfórico Hidrolasas/genética , Proteínas Serina-Treonina Quinasas , Proteínas Supresoras de Tumor/genética , Células 3T3 , Adipocitos/fisiología , Animales , Línea Celular , Células Cultivadas , Regulación de la Expresión Génica , Genes Supresores de Tumor , Glucosa/metabolismo , Hepatocitos , Insulina/metabolismo , Cinética , Metabolismo de los Lípidos , Ratones , Oligodesoxirribonucleótidos Antisentido/farmacología , Fosfohidrolasa PTEN , Fosfatidilinositol 3-Quinasas/metabolismo , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , ARN Mensajero/genética , Proteínas Recombinantes/antagonistas & inhibidores , Transcripción Genética/efectos de los fármacos , Transfección , Proteínas Supresoras de Tumor/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA