Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Hepatol ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089631

RESUMEN

BACKGROUND & AIMS: Cholangiocarcinoma (CCA) is a dreaded complication of primary sclerosing cholangitis (PSC) that is difficult to diagnose and associated with high mortality. Lack of animal models of CCA recapitulating the hepatic microenvironment of sclerosing cholangitis has hindered the development of novel treatments. Herein, we sought to develop a mouse model of PSC-associated CCA. METHODS: Ten-week-old Mdr2-/- mice with congenital PSC-like disease, and healthy wild-type littermates were subjected to either modified retrograde biliary instillation or hydrodynamic tail vein injection of a sleeping beauty transposon-transposase plasmid system with activated AKT (myr-AKT) and Yap (YapS127A) proto-oncogenes (SB AKT/YAP1). The role of TGFß was interrogated via ALK5 inhibitor (SB-525334) administration. Tumor phenotype, burden and desmoplastic reaction were analyzed histologically and via RNA sequencing. RESULTS: While SB AKT/YAP1 plasmids administered via retrograde biliary injection caused tumors in Mdr2-/-, only 26.67% (4/15) of these tumors were CCA. Alternatively, hydrodynamic tail vein injection of SB AKT/YAP1 resulted in robust tumorigenesis in all fibrotic Mdr2-/- mice with high CCA burden compared to healthy mice. Tumors phenotypically resembled human CCA, expressed multiple CCA (but not hepatocellular carcinoma) markers, and exhibited a profound desmoplastic reaction. RNA sequencing analysis revealed profound transcriptional changes in CCA evolving in a PSC-like context, with specific alterations in multiple immune pathways. Pharmacological TGFß inhibition led to enhanced immune cell tumor infiltration, reduced tumor burden and suppressed desmoplastic collagen accumulation compared to placebo. CONCLUSION: We established a new high-fidelity cholangiocarcinoma model in mice, termed SB CCA.Mdr2-/-, which recapitulates the increased susceptibility to CCA in the setting of biliary injury and fibrosis observed in PSC. Through transcriptomics and pharmacological studies, we show dysregulation of multiple immune pathways and TGFß signaling as potential drivers of CCA in a PSC-like microenvironment. IMPACT AND IMPLICATIONS: Animal models for primary sclerosing cholangitis (PSC)-related cholangiocarcinoma (PSC-CCA) are lacking. Thus, we have developed and characterized a new mouse model of PSC-CCA, termed SB CCA.Mdr2-/-, which features reliable tumor induction on a PSC-like background of biliary injury and fibrosis. Global gene expression alterations were identified and standardized tools, including automated whole slide image analysis methodology for tumor burden and feature analysis, were established to enable systematic research into PSC-CCA biology and formal preclinical drug testing.

2.
Hepatology ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563629

RESUMEN

BACKGROUND AND AIMS: Fibrosis is the common end point for all forms of chronic liver injury, and the progression of fibrosis leads to the development of end-stage liver disease. Activation of HSCs and their transdifferentiation into myofibroblasts results in the accumulation of extracellular matrix proteins that form the fibrotic scar. Long noncoding RNAs regulate the activity of HSCs and provide targets for fibrotic therapies. APPROACH AND RESULTS: We identified long noncoding RNA TILAM located near COL1A1 , expressed in HSCs, and induced with liver fibrosis in humans and mice. Loss-of-function studies in human HSCs and human liver organoids revealed that TILAM regulates the expression of COL1A1 and other extracellular matrix genes. To determine the role of TILAM in vivo, we annotated the mouse ortholog ( Tilam ), generated Tilam- deficient green fluorescent protein-reporter mice, and challenged these mice in 2 different models of liver fibrosis. Single-cell data and analysis of single-data and analysis of Tilam-deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Tilam -deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Furthermore, loss of Tilam expression attenuated the development of fibrosis in the setting of in vivo liver injury. Finally, we found that TILAM interacts with promyelocytic leukemia nuclear body scaffold protein to regulate a feedback loop by which TGF-ß2 reinforces TILAM expression and nuclear localization of promyelocytic leukemia nuclear body scaffold protein to promote the fibrotic activity of HSCs. CONCLUSIONS: TILAM is activated in HSCs with liver injury and interacts with promyelocytic leukemia nuclear body scaffold protein to drive the development of fibrosis. Depletion of TILAM may serve as a therapeutic approach to combat the development of end-stage liver disease.

3.
FASEB J ; 38(8): e23585, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38661043

RESUMEN

Fractional laser ablation is a technique developed in dermatology to induce remodeling of skin scars by creating a dense pattern of microinjuries. Despite remarkable clinical results, this technique has yet to be tested for scars in other tissues. As a first step toward determining the suitability of this technique, we aimed to (1) characterize the response to microinjuries in the healthy and cirrhotic liver, and (2) determine the underlying cause for any differences in response. Healthy and cirrhotic rats were treated with a fractional laser then euthanized from 0 h up to 14 days after treatment. Differential expression was assessed using RNAseq with a difference-in-differences model. Spatial maps of tissue oxygenation were acquired with hyperspectral imaging and disruptions in blood supply were assessed with tomato lectin perfusion. Healthy rats showed little damage beyond the initial microinjury and healed completely by 7 days without scarring. In cirrhotic rats, hepatocytes surrounding microinjury sites died 4-6 h after ablation, resulting in enlarged and heterogeneous zones of cell death. Hepatocytes near blood vessels were spared, particularly near the highly vascularized septa. Gene sets related to ischemia and angiogenesis were enriched at 4 h. Laser-treated regions had reduced oxygen saturation and broadly disrupted perfusion of nodule microvasculature, which matched the zones of cell death. Our results demonstrate that the cirrhotic liver has an exacerbated response to microinjuries and increased susceptibility to ischemia from microvascular damage, likely related to the vascular derangements that occur during cirrhosis development. Modifications to the fractional laser tool, such as using a femtosecond laser or reducing the spot size, may be able to prevent large disruptions of perfusion and enable further development of a laser-induced microinjury treatment for cirrhosis.


Asunto(s)
Isquemia , Cirrosis Hepática , Animales , Ratas , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Masculino , Isquemia/metabolismo , Isquemia/patología , Hígado/metabolismo , Hígado/patología , Terapia por Láser/métodos , Ratas Sprague-Dawley , Hepatocitos/metabolismo
4.
Hepatology ; 80(2): 346-362, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377458

RESUMEN

BACKGROUND AND AIMS: Apoptosis Signal-regulating Kinase 1 (ASK1) is activated by various pathological stimuli and induces cell apoptosis through downstream p38 activation. We studied the effect of pharmacological ASK1 inhibition on cirrhosis and its sequelae using comprehensive preclinical in vivo and in vitro systems. APPROACH AND RESULTS: Short-term (4-6 wk) and long-term (24-44 wk) ASK1 inhibition using small molecule GS-444217 was tested in thioacetamide-induced and BALB/c. Mdr2-/- murine models of cirrhosis and HCC, and in vitro using primary hepatocyte cell death assays. Short-term GS-444217 therapy in both models strongly reduced phosphorylated p38, hepatocyte death, and fibrosis by up to 50%. Profibrogenic release of mitochondrial DAMP mitochondrial deoxyribonucleic acid from dying hepatocytes was blocked by ASK1 or p38 inhibition. Long-term (24 wk) therapy in BALBc.Mdr2 - / - model resulted in a moderate 25% reduction in bridging fibrosis, but not in net collagen deposition. Despite this, the development of cirrhosis was effectively prevented, with strongly reduced p21 + hepatocyte staining (by 72%), serum ammonia levels (by 46%), and portal pressure (average 6.07 vs. 8.53 mm Hg in controls). Extended ASK1 inhibition for 44 wk in aged BALB/c. Mdr2-/- mice resulted in markedly reduced tumor number and size by ~50% compared to the control group. CONCLUSIONS: ASK1 inhibition suppresses the profibrogenic release of mitochondrial deoxyribonucleic acid from dying hepatocytes in a p38-dependent manner and protects from liver fibrosis. Long-term ASK1 targeting resulted in diminished net antifibrotic effect, but the progression to liver cirrhosis and cancer in BALBc/ Mdr2- / - mice was effectively inhibited. These data support the clinical evaluation of ASK1 inhibitors in fibrotic liver diseases.


Asunto(s)
Progresión de la Enfermedad , Hepatocitos , Cirrosis Hepática , Neoplasias Hepáticas , MAP Quinasa Quinasa Quinasa 5 , Ratones Endogámicos BALB C , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , MAP Quinasa Quinasa Quinasa 5/antagonistas & inhibidores , MAP Quinasa Quinasa Quinasa 5/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Ratones , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Masculino , Tioacetamida/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Animales de Enfermedad
5.
bioRxiv ; 2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37546982

RESUMEN

Background & Aims: Fibrosis is the common endpoint for all forms of chronic liver injury, and progression of fibrosis leads to the development of end-stage liver disease. Activation of hepatic stellate cells (HSCs) and their transdifferentiation to myofibroblasts results in the accumulation of extracellular matrix (ECM) proteins that form the fibrotic scar. Long noncoding (lnc) RNAs regulate the activity of HSCs and may provide targets for fibrotic therapies. Methods: We identified lncRNA TILAM as expressed near COL1A1 in human HSCs and performed loss-of-function studies in human HSCs and liver organoids. Transcriptomic analyses of HSCs isolated from mice defined the murine ortholog of TILAM . We then generated Tilam -deficient GFP reporter mice and quantified fibrotic responses to carbon tetrachloride (CCl 4 ) and choline-deficient L-amino acid defined high fat diet (CDA-HFD). Co-precipitation studies, mass spectrometry, and gene expression analyses identified protein partners of TILAM . Results: TILAM is conserved between human and mouse HSCs and regulates expression of ECM proteins, including collagen. Tilam is selectively induced in HSCs during the development of fibrosis in vivo . In both male and female mice, loss of Tilam results in reduced fibrosis in the setting of CCl 4 and CDA-HFD injury models. TILAM interacts with promyelocytic leukemia protein (PML) to stabilize PML protein levels and promote the fibrotic activity of HSCs. Conclusion: TILAM is activated in HSCs and interacts with PML to drive the development of liver fibrosis. Depletion of TILAM may serve as a therapeutic approach to combat the development of end stage liver disease.

6.
Nature ; 595(7865): 107-113, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33915569

RESUMEN

COVID-19, which is caused by SARS-CoV-2, can result in acute respiratory distress syndrome and multiple organ failure1-4, but little is known about its pathophysiology. Here we generated single-cell atlases of 24 lung, 16 kidney, 16 liver and 19 heart autopsy tissue samples and spatial atlases of 14 lung samples from donors who died of COVID-19. Integrated computational analysis uncovered substantial remodelling in the lung epithelial, immune and stromal compartments, with evidence of multiple paths of failed tissue regeneration, including defective alveolar type 2 differentiation and expansion of fibroblasts and putative TP63+ intrapulmonary basal-like progenitor cells. Viral RNAs were enriched in mononuclear phagocytic and endothelial lung cells, which induced specific host programs. Spatial analysis in lung distinguished inflammatory host responses in lung regions with and without viral RNA. Analysis of the other tissue atlases showed transcriptional alterations in multiple cell types in heart tissue from donors with COVID-19, and mapped cell types and genes implicated with disease severity based on COVID-19 genome-wide association studies. Our foundational dataset elucidates the biological effect of severe SARS-CoV-2 infection across the body, a key step towards new treatments.


Asunto(s)
COVID-19/patología , COVID-19/virología , Riñón/patología , Hígado/patología , Pulmón/patología , Miocardio/patología , SARS-CoV-2/patogenicidad , Adulto , Anciano , Anciano de 80 o más Años , Atlas como Asunto , Autopsia , Bancos de Muestras Biológicas , COVID-19/genética , COVID-19/inmunología , Células Endoteliales , Células Epiteliales/patología , Células Epiteliales/virología , Femenino , Fibroblastos , Estudio de Asociación del Genoma Completo , Corazón/virología , Humanos , Inflamación/patología , Inflamación/virología , Riñón/virología , Hígado/virología , Pulmón/virología , Masculino , Persona de Mediana Edad , Especificidad de Órganos , Fagocitos , Alveolos Pulmonares/patología , Alveolos Pulmonares/virología , ARN Viral/análisis , Regeneración , SARS-CoV-2/inmunología , Análisis de la Célula Individual , Carga Viral
7.
Nat Commun ; 11(1): 2362, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398673

RESUMEN

Due to their bacterial ancestry, many components of mitochondria share structural similarities with bacteria. Release of molecular danger signals from injured cell mitochondria (mitochondria-derived damage-associated molecular patterns, mito-DAMPs) triggers a potent inflammatory response, but their role in fibrosis is unknown. Using liver fibrosis resistant/susceptible mouse strain system, we demonstrate that mito-DAMPs released from injured hepatocyte mitochondria (with mtDNA as major active component) directly activate hepatic stellate cells, the fibrogenic cell in the liver, and drive liver scarring. The release of mito-DAMPs is controlled by efferocytosis of dying hepatocytes by phagocytic resident liver macrophages and infiltrating Gr-1(+) myeloid cells. Circulating mito-DAMPs are markedly increased in human patients with non-alcoholic steatohepatitis (NASH) and significant liver fibrosis. Our study identifies specific pathway driving liver fibrosis, with important diagnostic and therapeutic implications. Targeting mito-DAMP release from hepatocytes and/or modulating the phagocytic function of macrophages represents a promising antifibrotic strategy.


Asunto(s)
Alarminas/inmunología , Células Estrelladas Hepáticas/inmunología , Hepatocitos/metabolismo , Cirrosis Hepática/inmunología , Enfermedad del Hígado Graso no Alcohólico/patología , Adulto , Anciano , Anciano de 80 o más Años , Alarminas/metabolismo , Animales , Apoptosis/inmunología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Hepatocitos/citología , Hepatocitos/inmunología , Humanos , Hígado/citología , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Macrófagos/inmunología , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/inmunología , Fagocitosis/inmunología , Tioacetamida/toxicidad , Adulto Joven
8.
Hepatology ; 72(2): 729-741, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32176358

RESUMEN

The cross-linking of structural extracellular matrix (ECM) components, especially fibrillar collagens and elastin, is strongly implicated in fibrosis progression and resistance to fibrosis reversal. Lysyl oxidase family members (LOX and LOXL1 [lysyl oxidase-like 1], LOXL2 [lysyl oxidase-like 2], LOXL3 [lysyl oxidase-like 3], and LOXL4 [lysyl oxidase like 4]) are extracellular copper-dependent enzymes that play a key role in ECM cross-linking, but have also other intracellular functions relevant to fibrosis and carcinogenesis. Although the expression of most LOX family members is elevated in experimental liver fibrosis of diverse etiologies, their individual contribution to fibrosis is incompletely understood. Inhibition of the LOX family as a whole and of LOX, LOXL1, and LOXL2 specifically has been shown to suppress fibrosis progression and accelerate its reversal in rodent models of cardiac, renal, pulmonary, and liver fibrosis. Recent disappointing clinical trials with a monoclonal antibody against LOXL2 (simtuzumab) in patients with pulmonary and liver fibrosis dampened enthusiasm for LOX family member inhibition. However, this unexpected negative outcome may be related to the inefficient antibody, rather than to LOXL2, not qualifying as a relevant antifibrotic target. Moreover, LOX family members other than LOXL2 may prove to be attractive therapeutic targets. In this review, we summarize the structural hallmarks, expression patterns, covalent cross-linking activities, and modes of regulation of LOX family members and discuss the clinical potential of their inhibition to treat fibrosis in general and liver fibrosis in particular.


Asunto(s)
Cirrosis Hepática/tratamiento farmacológico , Proteína-Lisina 6-Oxidasa/antagonistas & inhibidores , Aminoácido Oxidorreductasas/antagonistas & inhibidores , Animales , Humanos , Cirrosis Hepática/etiología , Proteína-Lisina 6-Oxidasa/fisiología
9.
Am J Physiol Gastrointest Liver Physiol ; 318(1): G174-G188, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31630534

RESUMEN

Progressive fibrosis, functional liver failure, and cancer are the central liver-related outcomes of nonalcoholic steatohepatitis (NASH) but notoriously difficult to achieve in mouse models. We performed a direct, quantitative comparison of hepatic fibrosis progression in well-defined methionine- and choline-deficient (MCD) and choline-deficient, amino-acid defined (CDAA) diets with increasing fat content (10-60% by calories) in C57Bl/6J and BALB/cAnNCrl mice. In C57Bl/6J mice, MCD feeding resulted in moderate fibrosis at week 8 (up to twofold increase in total hepatic collagen content) and progressive weight loss irrespective of dietary fat. In contrast, CDAA-fed mice did not lose weight and developed progressive fibrosis starting from week 4. High dietary fat in the CDAA diet model induced the lipid metabolism genes for sterol regulatory element-binding protein and stearoyl-CoA desaturase-2 and increased ductular reaction and fibrosis in a dose-dependent manner. Longitudinal analysis of CDAA with 60% fat (HF-CDAA) feeding revealed pronounced ductular reaction and perisinusoidal bridging fibrosis, with a sevenfold increase of hepatic collagen at week 12, which showed limited spontaneous reversibility. At 24 wk, HF-CDAA mice developed signs of cirrhosis with pan-lobular "chicken wire" fibrosis, 10-fold hydroxyproline increase, regenerative nodules, portal hypertension and elevated serum bilirubin and ammonia levels; 80% of mice (8/10) developed multiple glypican-3- and/or glutamine synthetase-positive hepatocellular carcinomas (HCC). High-fat (60%) supplementation of MCD in C57Bl/6J or feeding the HF-CDAA diet fibrosis-prone BALB/cAnNCrl strain failed to result in increased fibrosis. In conclusion, HF-CDAA feeding in C57Bl/6J mice was identified as an optimal model of steatohepatitis with robust fibrosis and ductular proliferations that progress to cirrhosis and HCC within 24 wk. This robust model will aid the testing of interventions and drugs for severe NASH.NEW & NOTEWORTHY Via quantitative comparison of several dietary models, we report HF-CDAA feeding in C57Bl/6 mice as an excellent model recapitulating several key aspects of fibrotic NASH: 1) robust, poorly reversible liver fibrosis, 2) prominent ductular reaction, and 3) progression to cirrhosis, portal hypertension, and liver cancer within 24 wk. High fat dose-dependently activates SREBP2/SCD2 genes and drives liver fibrosis in e HF-CDAA model. These features qualify the model as a robust and practical tool to study mechanisms and novel treatments addressing severe human NASH.


Asunto(s)
Proliferación Celular , Deficiencia de Colina/complicaciones , Dieta Alta en Grasa , Cirrosis Hepática Experimental/etiología , Neoplasias Hepáticas/etiología , Hígado/patología , Metionina/deficiencia , Enfermedad del Hígado Graso no Alcohólico/etiología , Alimentación Animal , Animales , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Progresión de la Enfermedad , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hígado/metabolismo , Cirrosis Hepática Experimental/genética , Cirrosis Hepática Experimental/metabolismo , Cirrosis Hepática Experimental/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Factores de Tiempo
10.
Purinergic Signal ; 15(3): 375-385, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31243614

RESUMEN

Purinergic signaling is important in the activation and differentiation of macrophages, which play divergent roles in the pathophysiology of liver fibrosis. The ectonucleotidase CD39 is known to modulate the immunoregulatory phenotype of macrophages, but whether this specifically impacts cholestatic liver injury is unknown. Here, we investigated the role of macrophage-expressed CD39 on the development of biliary injury and fibrosis in a mouse model of sclerosing cholangitis. Myeloid-specific CD39-deficient mice (LysMCreCd39fl/fl) were generated. Global CD39 null (Cd39-/-), wild-type (WT), LysMCreCd39fl/fl, and Cd39fl/fl control mice were exposed to 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to induce biliary fibrosis. Hepatic hydroxyproline levels, liver histology, immunohistochemistry, mRNA expression levels, and serum biochemistry were then assessed. Following 3 weeks of DDC-feeding, Cd39-/- mice exhibited more severe fibrosis, when compared to WT mice as reflected by morphology and increased liver collagen content. Myeloid-specific CD39 deletion in LysMCreCd39fl/fl mice recapitulated the phenotype of global Cd39-/-, after exposure to DDC, and resulted in similar worsening of liver fibrosis when compared to Cd39fl/fl control animals. Further, DDC-treated LysMCreCd39fl/fl mice exhibited elevated serum levels of transaminases and total bilirubin, as well as increased hepatic expression of the profibrogenic genes Tgf-ß1, Tnf-α, and α-Sma. However, no clear differences were observed in the expression of macrophage-elaborated specific cytokines between LysMCreCd39fl/fl and Cd39fl/fl animals subjected to biliary injury. Our results in the DDC-induced biliary type liver fibrosis model suggest that loss of CD39 expression on myeloid cells largely accounts for the exacerbated sclerosing cholangitis in global CD39 knockouts. These findings indicate that macrophage expressed CD39 protects from biliary liver injury and fibrosis and support a potential therapeutic target for human hepatobiliary diseases.


Asunto(s)
Antígenos CD/metabolismo , Apirasa/metabolismo , Colangitis Esclerosante/metabolismo , Animales , Colangitis Esclerosante/inducido químicamente , Colangitis Esclerosante/patología , Modelos Animales de Enfermedad , Cirrosis Hepática/metabolismo , Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Piridinas/toxicidad
11.
Purinergic Signal ; 14(1): 37-46, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29134411

RESUMEN

Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) are cell surface-located transmembrane ecto-enzymes of the CD39 superfamily which regulate inflammation and tissue repair by catalyzing the phosphohydrolysis of extracellular nucleotides and modulating purinergic signaling. In the liver, NTPDase2 is reportedly expressed on portal fibroblasts, but its functional role in regulating tissue regeneration and fibrosis is incompletely understood. Here, we studied the role of NTPDase2 in several models of liver injury using global knockout mice. Liver regeneration and severity of fibrosis were analyzed at different time points after exposure to carbon tetrachloride (CCl4) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or partial hepatectomy in C57BL/6 wild-type and globally NTPDase2-deficient (Entpd2 null) mice. After chronic CCl4 intoxication, Entpd2 null mice exhibit significantly more severe liver fibrosis, as assessed by collagen content and histology. In contrast, deletion of NTPDase2 does not have a substantial effect on biliary-type fibrosis in the setting of DDC feeding. In injured livers, NTPDase2 expression extends from the portal areas to fibrotic septae in pan-lobular (CCl4-induced) liver fibrosis; the same pattern was observed, albeit to a lesser extent in biliary-type (DDC-induced) fibrosis. Liver regeneration after partial hepatectomy is not substantively impaired in global Entpd2 null mice. NTPDase2 protects from liver fibrosis resulting from hepatocellular injury induced by CCl4. In contrast, Entpd2 deletion does not significantly impact fibrosis secondary to DDC injury or liver regeneration after partial hepatectomy. Our observations highlight mechanisms relating to purinergic signaling in the liver and indicate possible therapeutic avenues and new cellular targets to test in the management of hepatic fibrosis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cirrosis Hepática/enzimología , Regeneración Hepática/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
12.
Hepatol Commun ; 1(9): 957-972, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29404503

RESUMEN

The pathogenesis of primary sclerosing cholangitis (PSC) and the mechanistic link to inflammatory bowel disease remain ill-defined. Ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1)/clusters of differentiation (CD) 39, the dominant purinergic ecto-enzyme, modulates intestinal inflammation. Here, we have explored the role of CD39 in biliary injury and fibrosis. The impact of CD39 deletion on disease severity was studied in multidrug resistance protein 2 (Mdr2)-/- and 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse models of sclerosing cholangitis and biliary fibrosis. Antibody-mediated CD8+ T-cell depletion, selective gut decontamination, experimental colitis, and administration of stable adenosine triphosphate (ATP) agonist were performed. Retinoic acid-induced gut imprinting on T cells was studied in vitro. Over half of Mdr2-/-;CD39-/- double mutants, expected by Mendelian genetics, died in utero. Compared to Mdr2-/-;CD39+/+, surviving Mdr2-/-;CD39-/- mice demonstrated exacerbated liver injury, fibrosis, and ductular reaction. CD39 deficiency led to a selective increase in hepatic CD8+ T cells and integrin α4ß7, a T-cell gut-tropism receptor. CD8+ cell depletion in Mdr2-/-;CD39-/- mice diminished hepatobiliary injury and fibrosis. Treatment with antibiotics attenuated, whereas dextran sulfate sodium-induced colitis exacerbated, liver fibrosis in Mdr2-/- mice. Colonic administration of αß-ATP into CD39-sufficient Mdr2-/- mice triggered hepatic CD8+ cell influx and recapitulated the severe phenotype observed in Mdr2-/-;CD39-/- mice. In vitro, addition of ATP promoted the retinoic acid-induced imprinting of gut-homing integrin α4ß7 on naive CD8+ cells. CD39 expression was relatively low in human normal or PSC livers but abundantly present on immune cells of the colon and further up-regulated in samples of patients with inflammatory bowel disease. Conclusion: CD39 deletion promotes biliary injury and fibrosis through gut-imprinted CD8+ T cells. Pharmacological modulation of purinergic signaling may represent a promising approach for the treatment of PSC. (Hepatology Communications 2017;1:957-972).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA