Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Dev Dyn ; 250(12): 1739-1758, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34036636

RESUMEN

BACKGROUND: Metamorphosis in marine species is characterized by profound changes at the ecophysiological, morphological, and cellular levels. The cnidarian Clytia hemisphaerica exhibits a triphasic life cycle that includes a planula larva, a colonial polyp, and a sexually reproductive medusa. Most studies so far have focused on the embryogenesis of this species, whereas its metamorphosis has been only partially studied. RESULTS: We investigated the main morphological changes of the planula larva of Clytia during the metamorphosis, and the associated cell proliferation and apoptosis. Based on our observations of planulae at successive times following artificial metamorphosis induction using GLWamide, we subdivided the Clytia's metamorphosis into a series of eight morphological stages occurring during a pre-settlement phase (from metamorphosis induction to planula ready for settlement) and the post-settlement phase (from planula settlement to primary polyp). Drastic morphological changes prior to definitive adhesion to the substrate were accompanied by specific patterns of stem-cell proliferation as well as apoptosis in both ectoderm and endoderm. Further waves of apoptosis occurring once the larva has settled were associated with morphogenesis of the primary polyp. CONCLUSION: Clytia larval metamorphosis is characterized by distinct patterns of apoptosis and cell proliferation during the pre-settlement phase and the settled planula-to-polyp transformation.


Asunto(s)
Hidrozoos/crecimiento & desarrollo , Metamorfosis Biológica/fisiología , Animales , Apoptosis/fisiología , Polaridad Celular , Proliferación Celular/fisiología , Larva , Estadios del Ciclo de Vida/fisiología , Células Madre/fisiología
2.
Nat Ecol Evol ; 3(5): 801-810, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30858591

RESUMEN

Jellyfish (medusae) are a distinctive life-cycle stage of medusozoan cnidarians. They are major marine predators, with integrated neurosensory, muscular and organ systems. The genetic foundations of this complex form are largely unknown. We report the draft genome of the hydrozoan jellyfish Clytia hemisphaerica and use multiple transcriptomes to determine gene use across life-cycle stages. Medusa, planula larva and polyp are each characterized by distinct transcriptome signatures reflecting abrupt life-cycle transitions and all deploy a mixture of phylogenetically old and new genes. Medusa-specific transcription factors, including many with bilaterian orthologues, associate with diverse neurosensory structures. Compared to Clytia, the polyp-only hydrozoan Hydra has lost many of the medusa-expressed transcription factors, despite similar overall rates of gene content evolution and sequence evolution. Absence of expression and gene loss among Clytia orthologues of genes patterning the anthozoan aboral pole, secondary axis and endomesoderm support simplification of planulae and polyps in Hydrozoa, including loss of bilateral symmetry. Consequently, although the polyp and planula are generally considered the ancestral cnidarian forms, in Clytia the medusa maximally deploys the ancestral cnidarian-bilaterian transcription factor gene complement.


Asunto(s)
Hidrozoos , Animales , Evolución Molecular , Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA