Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 44(4): 772-783, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38385293

RESUMEN

Airway epithelial cells play an indispensable role in protecting the lung from inhaled pathogens and allergens by releasing an array of mediators that orchestrate inflammatory and immune responses when confronted with harmful environmental triggers. While this process is undoubtedly important for containing the effects of various harmful insults, dysregulation of the inflammatory response can cause lung diseases including asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. A key cellular mechanism that underlies the inflammatory responses in the airway is calcium signaling, which stimulates the production and release of chemokines, cytokines, and prostaglandins from the airway epithelium. In this review, we discuss the role of major Ca2+ signaling pathways found in airway epithelial cells and their contributions to airway inflammation, mucociliary clearance, and surfactant production. We highlight the importance of store-operated Ca2+ entry as a major signaling hub in these processes and discuss therapeutic implications of targeting Ca2+ signaling for airway inflammation.


Asunto(s)
Asma , Señalización del Calcio , Humanos , Asma/metabolismo , Pulmón , Células Epiteliales/metabolismo , Inflamación/metabolismo
2.
Elife ; 122023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36806330

RESUMEN

Ca2+ release-activated Ca2+ (CRAC) channels are activated by direct physical interactions between Orai1, the channel protein, and STIM1, the endoplasmic reticulum Ca2+ sensor. A hallmark of CRAC channels is fast Ca2+-dependent inactivation (CDI) which provides negative feedback to limit Ca2+ entry through CRAC channels. Although STIM1 is thought to be essential for CDI, its molecular mechanism remains largely unknown. Here, we examined a poorly understood gain-of-function (GOF) human Orai1 disease mutation, L138F, that causes tubular aggregate myopathy. Through pairwise mutational analysis, we determine that large amino acid substitutions at either L138 or the neighboring T92 locus located on the pore helix evoke highly Ca2+-selective currents in the absence of STIM1. We find that the GOF phenotype of the L138 pathogenic mutation arises due to steric clash between L138 and T92. Surprisingly, strongly activating L138 and T92 mutations showed CDI in the absence of STIM1, contradicting prevailing views that STIM1 is required for CDI. CDI of constitutively open T92W and L138F mutants showed enhanced intracellular Ca2+ sensitivity, which was normalized by re-adding STIM1 to the cells. Truncation of the Orai1 C-terminus reduced T92W CDI, indicating a key role for the Orai1 C-terminus for CDI. Overall, these results identify the molecular basis of a disease phenotype with broad implications for activation and inactivation of Orai1 channels.


Asunto(s)
Canales de Calcio , Canales de Calcio Activados por la Liberación de Calcio , Humanos , Canales de Calcio/metabolismo , Proteína ORAI1/genética , Mutación , Canales de Calcio Activados por la Liberación de Calcio/genética , Mutación con Ganancia de Función , Molécula de Interacción Estromal 1/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
3.
EMBO Mol Med ; 14(9): e15687, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35919953

RESUMEN

Inflammatory bowel disease (IBD) is characterized by dysregulated intestinal immune responses. Using mass cytometry (CyTOF) to analyze the immune cell composition in the lamina propria (LP) of patients with ulcerative colitis (UC) and Crohn's disease (CD), we observed an enrichment of CD4+ effector T cells producing IL-17A and TNF, CD8+ T cells producing IFNγ, T regulatory (Treg) cells, and innate lymphoid cells (ILC). The function of these immune cells is regulated by store-operated Ca2+ entry (SOCE), which results from the opening of Ca2+ release-activated Ca2+ (CRAC) channels formed by ORAI and STIM proteins. We observed that the pharmacologic inhibition of SOCE attenuated the production of proinflammatory cytokines including IL-2, IL-4, IL-6, IL-17A, TNF, and IFNγ by human colonic T cells and ILCs, reduced the production of IL-6 by B cells and the production of IFNγ by myeloid cells, but had no effect on the viability, differentiation, and function of intestinal epithelial cells. T cell-specific deletion of CRAC channel genes in mice showed that Orai1, Stim1, and Stim2-deficient T cells have quantitatively distinct defects in SOCE, which correlate with gradually more pronounced impairment of cytokine production by Th1 and Th17 cells and the severity of IBD. Moreover, the pharmacologic inhibition of SOCE with a selective CRAC channel inhibitor attenuated IBD severity and colitogenic T cell function in mice. Our data indicate that SOCE inhibition may be a suitable new approach for the treatment of IBD.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio , Enfermedades Inflamatorias del Intestino , Animales , Linfocitos T CD8-positivos/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , Humanos , Inmunidad Innata , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Ratones , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/genética , Células Th17/metabolismo
4.
J Biol Chem ; 298(8): 102157, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35724962

RESUMEN

Stromal interaction molecule 1 (STIM1) is a widely expressed protein that functions as the endoplasmic reticulum (ER) Ca2+ sensor and activator of Orai1 channels. In resting cells with replete Ca2+ stores, an inhibitory clamp formed by the coiled-coil 1 (CC1) domain interacting with the CRAC-activation domain (CAD) of STIM1 helps keep STIM1 in a quiescent state. Following depletion of ER Ca2+ stores, the brake is released, allowing CAD to extend away from the ER membrane and enabling it to activate Orai1 channels. However, the molecular determinants of CC1-CAD interactions that enforce the inhibitory clamp are incompletely understood. Here, we performed Ala mutagenesis in conjunction with live-cell FRET analysis to examine residues in CC1 and CAD that regulate the inhibitory clamp. Our results indicate that in addition to previously identified hotspots in CC1⍺1 and CC3, several hydrophobic residues in CC2 and the apex region of CAD are critical for CC1-CAD interactions. Mutations in these residues loosen the CC1-CAD inhibitory clamp to release CAD from CC1 in cells with replete Ca2+ stores. By contrast, altering the hydrophobic residues L265 and L273 strengthens the clamp to prevent STIM1 activation. Inclusion of the inactivation domain of STIM1 helps stabilize CC1-CAD interaction in several mutants to prevent spontaneous STIM1 activation. In addition, R426C, a human disease-linked mutation in CC3, affects the clamp but also impairs Orai1 binding to inhibit CRAC channel activation. These results identify the CC2, apex, and inactivation domain regions of STIM1 as important determinants of STIM1 activation.


Asunto(s)
Señalización del Calcio , Retículo Endoplásmico , Molécula de Interacción Estromal 1 , Calcio/metabolismo , Canales de Calcio/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Dominios Proteicos , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
5.
J Immunol ; 208(10): 2390-2402, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35459743

RESUMEN

Respiratory viruses stimulate the release of antiviral IFNs from the airway epithelium. Previous studies have shown that asthmatic patients show diminished release of type I and type III IFNs from bronchial epithelia. However, the mechanism of this suppression is not understood. In this study, we report that extracellular nucleotides and histamine, which are elevated in asthmatic airways, strongly inhibit release of type I and type III IFNs from human bronchial airway epithelial cells (AECs). Specifically, ATP, UTP, and histamine all inhibited the release of type I and type III IFNs from AECs induced by activation of TLR3, retinoic acid-inducible gene I (RIG-I), or cyclic GMP-AMP synthase-STING. This inhibition was at least partly mediated by Gq signaling through purinergic P2Y2 and H1 receptors, but it did not involve store-operated calcium entry. Pharmacological blockade of protein kinase C partially reversed inhibition of IFN production. Conversely, direct activation of protein kinase C with phorbol esters strongly inhibited TLR3- and RIG-I-mediated IFN production. Inhibition of type I and type III IFNs by ATP, UTP, histamine, and the proteinase-activated receptor 2 (PAR2) receptor agonist SLIGKV also occurred in differentiated AECs grown at an air-liquid interface, indicating that the suppression is conserved following mucociliary differentiation. Importantly, histamine and, more strikingly, ATP inhibited type I IFN release from human airway cells infected with live influenza A virus or rhinovirus 1B. These results reveal an important role for extracellular nucleotides and histamine in attenuating the induction of type I and III IFNs from AECs and help explain the molecular basis of the suppression of IFN responses in asthmatic patients.


Asunto(s)
Proteína 58 DEAD Box , Histamina , Interferones , Nucleótidos , Receptores Inmunológicos , Mucosa Respiratoria , Receptor Toll-Like 3 , Adenosina Trifosfato/inmunología , Proteína 58 DEAD Box/inmunología , Células Epiteliales/inmunología , Histamina/inmunología , Humanos , Interferones/inmunología , Nucleótidos/inmunología , Proteína Quinasa C/inmunología , Receptores Inmunológicos/inmunología , Mucosa Respiratoria/inmunología , Receptor Toll-Like 3/inmunología , Uridina Trifosfato/metabolismo , Uridina Trifosfato/farmacología
6.
J Immunol ; 207(5): 1275-1287, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34389624

RESUMEN

The airway epithelial cells (AECs) lining the conducting passageways of the lung secrete a variety of immunomodulatory factors. Among these, PGE2 limits lung inflammation and promotes bronchodilation. By contrast, IL-6 drives intense airway inflammation, remodeling, and fibrosis. The signaling that differentiates the production of these opposing mediators is not understood. In this study, we find that the production of PGE2 and IL-6 following stimulation of human AECs by the damage-associated molecular pattern extracellular ATP shares a common requirement for Ca2+ release-activated Ca2+ (CRAC) channels. ATP-mediated synthesis of PGE2 required activation of metabotropic P2Y2 receptors and CRAC channel-mediated cytosolic phospholipase A2 signaling. By contrast, ATP-evoked synthesis of IL-6 occurred via activation of ionotropic P2X receptors and CRAC channel-mediated calcineurin/NFAT signaling. In contrast to ATP, which elicited the production of both PGE2 and IL-6, the uridine nucleotide, UTP, stimulated PGE2 but not IL-6 production. These results reveal that human AECs employ unique receptor-specific signaling mechanisms with CRAC channels as a signaling nexus to regulate release of opposing immunomodulatory mediators. Collectively, our results identify P2Y2 receptors, CRAC channels, and P2X receptors as potential intervention targets for airway diseases.


Asunto(s)
Dinoprostona/metabolismo , Inflamación/inmunología , Interleucina-6/metabolismo , Mucosa Respiratoria/metabolismo , Adenosina Trifosfato/farmacocinética , Alarminas/metabolismo , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Células Cultivadas , Humanos , Inmunomodulación , Interleucina-6/genética , Factores de Transcripción NFATC/metabolismo , Fosfolipasas A2/metabolismo , Receptores Purinérgicos P2X/metabolismo , Mucosa Respiratoria/patología , Transducción de Señal , Nucleótidos de Uracilo/metabolismo
7.
Methods Enzymol ; 652: 213-239, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34059283

RESUMEN

Chemical modification of ion channels using the substituted cysteine accessibility method has a rich and successful history in elucidating the structural basis of ion channel function. In this approach, cysteine residues are introduced in regions of interest into the protein and their accessibility to water soluble thiol-reactive reagents is determined by monitoring ion channel activity. Because a wide range of these reagents are available with differing size, charge, and membrane solubility, the physio-chemical environment of the introduced cysteine residue and therefore the protein domain of interest can be probed with great precision. The approach has been widely employed for determining the secondary structure of specific ion channel domains, the location and nature of the channel gate, and the conformational rearrangements in the channel pore that underlie the opening/closing of the pore. In this chapter, we describe the use of these and related approaches to probe the functional architecture and gating of store-operated Orai1 channels.


Asunto(s)
Cisteína , Activación del Canal Iónico , Calcio/metabolismo , Proteína ORAI1/metabolismo , Dominios Proteicos
8.
Elife ; 92020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33124982

RESUMEN

Sulfur-aromatic interactions occur in the majority of protein structures, yet little is known about their functional roles in ion channels. Here, we describe a novel molecular motif, the M101 gate latch, which is essential for gating of human Orai1 channels via its sulfur-aromatic interactions with the F99 hydrophobic gate. Molecular dynamics simulations of different Orai variants reveal that the gate latch is mostly engaged in open but not closed channels. In experimental studies, we use metal-ion bridges to show that promoting an M101-F99 bond directly activates Orai1, whereas disrupting this interaction triggers channel closure. Mutational analysis demonstrates that the methionine residue at this position has a unique combination of length, flexibility, and chemistry to act as an effective latch for the phenylalanine gate. Because sulfur-aromatic interactions provide additional stabilization compared to purely hydrophobic interactions, we infer that the six M101-F99 pairs in the hexameric channel provide a substantial energetic contribution to Orai1 activation.


Asunto(s)
Activación del Canal Iónico/fisiología , Proteína ORAI1/metabolismo , Azufre/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Conformación Proteica , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Azufre/química
9.
Sci Signal ; 12(582)2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31113852

RESUMEN

Astrocytes are the major glial subtype in the brain and mediate numerous functions ranging from metabolic support to gliotransmitter release through signaling mechanisms controlled by Ca2+ Despite intense interest, the Ca2+ influx pathways in astrocytes remain obscure, hindering mechanistic insights into how Ca2+ signaling is coupled to downstream astrocyte-mediated effector functions. Here, we identified store-operated Ca2+ release-activated Ca2+ (CRAC) channels encoded by Orai1 and STIM1 as a major route of Ca2+ entry for driving sustained and oscillatory Ca2+ signals in astrocytes after stimulation of metabotropic purinergic and protease-activated receptors. Using synaptopHluorin as an optical reporter, we showed that the opening of astrocyte CRAC channels stimulated vesicular exocytosis to mediate the release of gliotransmitters, including ATP. Furthermore, slice electrophysiological recordings showed that activation of astrocytes by protease-activated receptors stimulated interneurons in the CA1 hippocampus to increase inhibitory postsynaptic currents on CA1 pyramidal cells. These results reveal a central role for CRAC channels as regulators of astrocyte Ca2+ signaling, gliotransmitter release, and astrocyte-mediated tonic inhibition of CA1 pyramidal neurons.


Asunto(s)
Astrocitos/fisiología , Señalización del Calcio/fisiología , Calcio/metabolismo , Neuronas GABAérgicas/fisiología , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Canales de Calcio Activados por la Liberación de Calcio/genética , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Células Cultivadas , Exocitosis/fisiología , Femenino , Neuronas GABAérgicas/citología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteína ORAI1/genética , Células Piramidales/citología , Células Piramidales/fisiología , Molécula de Interacción Estromal 1/genética , Transmisión Sináptica/fisiología
10.
Cell Metab ; 29(2): 335-347.e5, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30318339

RESUMEN

Urban particulate matter air pollution induces the release of pro-inflammatory cytokines including interleukin-6 (IL-6) from alveolar macrophages, resulting in an increase in thrombosis. Here, we report that metformin provides protection in this murine model. Treatment of mice with metformin or exposure of murine or human alveolar macrophages to metformin prevented the particulate matter-induced generation of complex III mitochondrial reactive oxygen species, which were necessary for the opening of calcium release-activated channels (CRAC) and release of IL-6. Targeted genetic deletion of electron transport or CRAC channels in alveolar macrophages in mice prevented particulate matter-induced acceleration of arterial thrombosis. These findings suggest metformin as a potential therapy to prevent some of the premature deaths attributable to air pollution exposure worldwide.


Asunto(s)
Contaminación del Aire/efectos adversos , Enfermedades Pulmonares/tratamiento farmacológico , Macrófagos Alveolares/metabolismo , Metformina/farmacología , Mitocondrias/metabolismo , Material Particulado/toxicidad , Trombosis/tratamiento farmacológico , Animales , Línea Celular , Citocinas/metabolismo , Transporte de Electrón , Humanos , Interleucina-6/metabolismo , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
11.
Proc Natl Acad Sci U S A ; 115(22): E5193-E5202, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29760086

RESUMEN

Store-operated Orai1 channels are activated through a unique inside-out mechanism involving binding of the endoplasmic reticulum Ca2+ sensor STIM1 to cytoplasmic sites on Orai1. Although atomic-level details of Orai structure, including the pore and putative ligand binding domains, are resolved, how the gating signal is communicated to the pore and opens the gate is unknown. To address this issue, we used scanning mutagenesis to identify 15 residues in transmembrane domains (TMs) 1-4 whose perturbation activates Orai1 channels independently of STIM1. Cysteine accessibility analysis and molecular-dynamics simulations indicated that constitutive activation of the most robust variant, H134S, arises from a pore conformational change that opens a hydrophobic gate to augment pore hydration, similar to gating evoked by STIM1. Mutational analysis of this locus suggests that H134 acts as steric brake to stabilize the closed state of the channel. In addition, atomic packing analysis revealed distinct functional contacts between the TM1 pore helix and the surrounding TM2/3 helices, including one set mediated by a cluster of interdigitating hydrophobic residues and another by alternative ridges of polar and hydrophobic residues. Perturbing these contacts via mutagenesis destabilizes STIM1-mediated Orai1 channel gating, indicating that these bridges between TM1 and the surrounding TM2/3 ring are critical for conveying the gating signal to the pore. These findings help develop a framework for understanding the global conformational changes and allosteric interactions between topologically distinct domains that are essential for activation of Orai1 channels.


Asunto(s)
Calcio/química , Calcio/metabolismo , Proteína ORAI1/química , Proteína ORAI1/metabolismo , Humanos , Simulación de Dinámica Molecular , Proteína ORAI1/genética , Dominios Proteicos
12.
Nat Commun ; 8: 14714, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28294127

RESUMEN

Store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels is critical for lymphocyte function and immune responses. CRAC channels are hexamers of ORAI proteins that form the channel pore, but the contributions of individual ORAI homologues to CRAC channel function are not well understood. Here we show that deletion of Orai1 reduces, whereas deletion of Orai2 increases, SOCE in mouse T cells. These distinct effects are due to the ability of ORAI2 to form heteromeric channels with ORAI1 and to attenuate CRAC channel function. The combined deletion of Orai1 and Orai2 abolishes SOCE and strongly impairs T cell function. In vivo, Orai1/Orai2 double-deficient mice have impaired T cell-dependent antiviral immune responses, and are protected from T cell-mediated autoimmunity and alloimmunity in models of colitis and graft-versus-host disease. Our study demonstrates that ORAI1 and ORAI2 form heteromeric CRAC channels, in which ORAI2 fine-tunes the magnitude of SOCE to modulate immune responses.


Asunto(s)
Calcio/metabolismo , Inmunidad , Proteína ORAI2/metabolismo , Linfocitos T/inmunología , Traslado Adoptivo , Animales , Proliferación Celular , Colitis/inmunología , Colitis/patología , Citocinas/biosíntesis , Eliminación de Gen , Regulación de la Expresión Génica , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/patología , Homeostasis , Humanos , Inmunidad Humoral , Activación del Canal Iónico , Recuento de Linfocitos , Macrófagos/metabolismo , Ratones Endogámicos BALB C , Proteína ORAI1/deficiencia , Proteína ORAI1/metabolismo , Proteína ORAI2/deficiencia , Multimerización de Proteína , Linfocitos T Reguladores/metabolismo , Trasplante Homólogo
13.
Nat Commun ; 8: 14512, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28220789

RESUMEN

Store-operated Ca2+ release-activated Ca2+ (CRAC) channels constitute a major pathway for Ca2+ influx and mediate many essential signalling functions in animal cells, yet how they open remains elusive. Here, we investigate the gating mechanism of the human CRAC channel Orai1 by its activator, stromal interacting molecule 1 (STIM1). We find that two rings of pore-lining residues, V102 and F99, work together to form a hydrophobic gate. Mutations of these residues to polar amino acids produce channels with leaky gates that conduct ions in the resting state. STIM1-mediated channel activation occurs through rotation of the pore helix, which displaces the F99 residues away from the pore axis to increase pore hydration, allowing ions to flow through the V102-F99 hydrophobic band. Pore helix rotation by STIM1 also explains the dynamic coupling between CRAC channel gating and ion selectivity. This hydrophobic gating mechanism has implications for CRAC channel function, pharmacology and disease-causing mutations.


Asunto(s)
Calcio/metabolismo , Activación del Canal Iónico , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Confocal , Modelos Moleculares , Mutación , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteína ORAI1/química , Proteína ORAI1/genética , Fenilalanina/química , Fenilalanina/genética , Fenilalanina/metabolismo , Estructura Secundaria de Proteína , Rotación , Molécula de Interacción Estromal 1/química , Molécula de Interacción Estromal 1/genética , Valina/química , Valina/genética , Valina/metabolismo
14.
Sci Rep ; 6: 32311, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27604412

RESUMEN

Aberrant immune responses to environmental allergens including insect allergens from house dust mites and cockroaches contribute to allergic inflammatory diseases such as asthma in susceptible individuals. Airway epithelial cells (AECs) play a critical role in this process by sensing the proteolytic activity of allergens via protease-activated receptors (PAR2) to initiate inflammatory and immune responses in the airway. Elevation of cytosolic Ca(2+) is an important signaling event in this process, yet the fundamental mechanism by which allergens induce Ca(2+) elevations in AECs remains poorly understood. Here we find that extracts from dust mite and cockroach induce sustained Ca(2+) elevations in AECs through the activation of Ca(2+) release-activated Ca(2+) (CRAC) channels encoded by Orai1 and STIM1. CRAC channel activation occurs, at least in part, through allergen mediated stimulation of PAR2 receptors. The ensuing Ca(2+) entry then activates NFAT/calcineurin signaling to induce transcriptional production of the proinflammatory cytokines IL-6 and IL-8. These findings highlight a key role for CRAC channels as regulators of allergen induced inflammatory responses in the airway.


Asunto(s)
Alérgenos/farmacología , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Calcio/metabolismo , Citocinas/metabolismo , Células Epiteliales/efectos de los fármacos , Alérgenos/inmunología , Animales , Bronquios/citología , Calcineurina/metabolismo , Línea Celular , Cucarachas/inmunología , Células Epiteliales/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Factores de Transcripción NFATC/metabolismo , Pyroglyphidae/inmunología , Transducción de Señal/efectos de los fármacos
15.
J Immunol ; 195(5): 2122-33, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26238490

RESUMEN

The G-protein-coupled protease-activated receptor 2 (PAR2) plays an important role in the pathogenesis of various inflammatory and auto-immune disorders. In airway epithelial cells (AECs), stimulation of PAR2 by allergens and proteases triggers the release of a host of inflammatory mediators to regulate bronchomotor tone and immune cell recruitment. Activation of PAR2 turns on several cell signaling pathways of which the mobilization of cytosolic Ca(2+) is likely a critical but poorly understood event. In this study, we show that Ca(2+) release-activated Ca(2+) (CRAC) channels encoded by stromal interaction molecule 1 and Orai1 are a major route of Ca(2+) entry in primary human AECs and drive the Ca(2+) elevations seen in response to PAR2 activation. Activation of CRAC channels induces the production of several key inflammatory mediators from AECs including thymic stromal lymphopoietin, IL-6, and PGE2, in part through stimulation of gene expression via nuclear factor of activated T cells (NFAT). Furthermore, PAR2 stimulation induces the production of many key inflammatory mediators including PGE2, IL-6, IL-8, and GM-CSF in a CRAC channel-dependent manner. These findings indicate that CRAC channels are the primary mechanism for Ca(2+) influx in AECs and a vital checkpoint for the induction of PAR2-induced proinflammatory cytokines.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Citocinas/metabolismo , Células Epiteliales/metabolismo , Receptor PAR-2/metabolismo , Western Blotting , Bronquios/citología , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Retículo Endoplásmico/metabolismo , Células Epiteliales/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Oligopéptidos/metabolismo , Oligopéptidos/farmacología , Interferencia de ARN , Receptor PAR-2/agonistas , Molécula de Interacción Estromal 1 , Molécula de Interacción Estromal 2 , Tripsina/metabolismo
16.
PLoS One ; 10(6): e0128622, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26035642

RESUMEN

Store-operated CRAC channels regulate a wide range of cellular functions including gene expression, chemotaxis, and proliferation. CRAC channels consist of two components: the Orai proteins (Orai1-3), which form the ion-selective pore, and STIM proteins (STIM1-2), which form the endoplasmic reticulum (ER) Ca2+ sensors. Activation of CRAC channels is initiated by the migration of STIM1 to the ER-plasma membrane (PM) junctions, where it directly interacts with Orai1 to open the Ca2+-selective pores of the CRAC channels. The recent elucidation of the Drosophila Orai structure revealed a hexameric channel wherein the C-terminal helices of adjacent Orai subunits associate in an anti-parallel orientation. This association is maintained by hydrophobic interactions between the Drosophila equivalents of human Orai1 residues L273 and L276. Here, we used mutagenesis and chemical cross-linking to assess the nature and extent of conformational changes in the self-associated Orai1 C-termini during STIM1 binding. We find that linking the anti-parallel coiled-coils of the adjacent Orai1 C-termini through disulfide cross-links diminishes STIM1-Orai1 interaction, as assessed by FRET. Conversely, prior binding of STIM1 to the Orai1 C-terminus impairs cross-linking of the Orai1 C-termini. Mutational analysis indicated that a bend of the Orai1 helix located upstream of the self-associated coils (formed by the amino acid sequence SHK) establishes an appropriate orientation of the Orai1 C-termini that is required for STIM1 binding. Together, our results support a model wherein the self-associated Orai1 C-termini rearrange modestly to accommodate STIM1 binding.


Asunto(s)
Canales de Calcio/química , Señalización del Calcio , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Western Blotting , Canales de Calcio/genética , Canales de Calcio/metabolismo , Membrana Celular/metabolismo , Proteínas de Drosophila/genética , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Activación del Canal Iónico/fisiología , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación/genética , Proteínas de Neoplasias/química , Proteína ORAI1 , Unión Proteica , Conformación Proteica , Subunidades de Proteína , Homología de Secuencia de Aminoácido , Molécula de Interacción Estromal 1
17.
Proc Natl Acad Sci U S A ; 112(19): 6206-11, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25918394

RESUMEN

Store-operated Ca(2+) entry (SOCE) is a universal Ca(2+) influx pathway that is important for the function of many cell types. SOCE occurs upon depletion of endoplasmic reticulum (ER) Ca(2+) stores and relies on a complex molecular interplay between the plasma membrane (PM) Ca(2+) channel ORAI1 and the ER Ca(2+) sensor stromal interaction molecule (STIM) 1. Patients with null mutations in ORAI1 or STIM1 genes present with severe combined immunodeficiency (SCID)-like disease. Here, we describe the molecular mechanisms by which a loss-of-function STIM1 mutation (R429C) in human patients abolishes SOCE. R429 is located in the third coiled-coil (CC3) domain of the cytoplasmic C terminus of STIM1. Mutation of R429 destabilizes the CC3 structure and alters the conformation of the STIM1 C terminus, thereby releasing a polybasic domain that promotes STIM1 recruitment to ER-PM junctions. However, the mutation also impairs cytoplasmic STIM1 oligomerization and abolishes STIM1-ORAI1 interactions. Thus, despite its constitutive localization at ER-PM junctions, mutant STIM1 fails to activate SOCE. Our results demonstrate multifunctional roles of the CC3 domain in regulating intra- and intermolecular STIM1 interactions that control (i) transition of STIM1 from a quiescent to an active conformational state, (ii) cytoplasmic STIM1 oligomerization, and (iii) STIM1-ORAI1 binding required for ORAI1 activation.


Asunto(s)
Síndromes de Inmunodeficiencia/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutación Missense , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Calcio/química , Canales de Calcio/metabolismo , Citoplasma/metabolismo , Dimerización , Retículo Endoplásmico/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Genes Recesivos , Células HEK293 , Homocigoto , Humanos , Microscopía Confocal , Proteína ORAI1 , Estructura Terciaria de Proteína , Molécula de Interacción Estromal 1
18.
FEBS Lett ; 588(24): 4686-93, 2014 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-25447523

RESUMEN

ß2-Adrenergic agonists have been shown to regulate Na,K-ATPase in the alveolar epithelium by recruiting Na,K-ATPase-containing vesicles to the plasma membrane of alveolar epithelial cells (AEC). Here, we provide evidence that ß2-agonists induce store-operated calcium entry (SOCE) in AECs. This calcium entry is necessary for ß2-agonist-induced recruitment of Na,K-ATPase to the plasma membrane of AECs. Specifically, we show that ß2-agonists induce SOCE via stromal interaction molecule 1 (STIM1)-associated calcium release-activated calcium (CRAC) channels. We also demonstrate that the magnitude of SOCE affects the abundance of Na,K-ATPase at the plasma membrane of AECs.


Asunto(s)
Antagonistas de Receptores Adrenérgicos beta 2/farmacología , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Adenilil Ciclasas/metabolismo , Albuterol/farmacología , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Activación Enzimática/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Transporte de Proteínas/efectos de los fármacos , Alveolos Pulmonares/citología , Ratas , Molécula de Interacción Estromal 1
19.
J Gen Physiol ; 143(3): 325-43, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24567508

RESUMEN

Prevailing models postulate that high Ca(2+) selectivity of Ca(2+) release-activated Ca(2+) (CRAC) channels arises from tight Ca(2+) binding to a high affinity site within the pore, thereby blocking monovalent ion flux. Here, we examined the contribution of high affinity Ca(2+) binding for Ca(2+) selectivity in recombinant Orai3 channels, which function as highly Ca(2+)-selective channels when gated by the endoplasmic reticulum Ca(2+) sensor STIM1 or as poorly Ca(2+)-selective channels when activated by the small molecule 2-aminoethoxydiphenyl borate (2-APB). Extracellular Ca(2+) blocked Na(+) currents in both gating modes with a similar inhibition constant (Ki; ~25 µM). Thus, equilibrium binding as set by the Ki of Ca(2+) blockade cannot explain the differing Ca(2+) selectivity of the two gating modes. Unlike STIM1-gated channels, Ca(2+) blockade in 2-APB-gated channels depended on the extracellular Na(+) concentration and exhibited an anomalously steep voltage dependence, consistent with enhanced Na(+) pore occupancy. Moreover, the second-order rate constants of Ca(2+) blockade were eightfold faster in 2-APB-gated channels than in STIM1-gated channels. A four-barrier, three-binding site Eyring model indicated that lowering the entry and exit energy barriers for Ca(2+) and Na(+) to simulate the faster rate constants of 2-APB-gated channels qualitatively reproduces their low Ca(2+) selectivity, suggesting that ion entry and exit rates strongly affect Ca(2+) selectivity. Noise analysis indicated that the unitary Na(+) conductance of 2-APB-gated channels is fourfold larger than that of STIM1-gated channels, but both modes of gating show a high open probability (Po; ~0.7). The increase in current noise during channel activation was consistent with stepwise recruitment of closed channels to a high Po state in both cases, suggesting that the underlying gating mechanisms are operationally similar in the two gating modes. These results suggest that both high affinity Ca(2+) binding and kinetic factors contribute to high Ca(2+) selectivity in CRAC channels.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Activación del Canal Iónico , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Sitios de Unión , Compuestos de Boro/farmacología , Agonistas de los Canales de Calcio/farmacología , Canales de Calcio/química , Células HEK293 , Humanos , Potenciales de la Membrana , Sodio/metabolismo , Molécula de Interacción Estromal 1
20.
Curr Top Membr ; 71: 1-32, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23890109

RESUMEN

In many animal cells, store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels function as an essential route for Ca(2+) entry. CRAC channels control many fundamental cellular functions including gene expression, motility, and cell proliferation, are involved in the etiology of several disease processes including a severe combined immunodeficiency syndrome, and have emerged as major targets for drug development. Although little was known of the molecular mechanisms of CRAC channel operation for several decades, the discovery of Orai1 as a prototypic CRAC channel protein and STIM1 as the endoplasmic reticulum (ER) Ca(2+) sensor has led to rapid progress in our understanding of the mechanisms and functions of CRAC channels. It is now known that activation of CRAC channels following ER Ca(2+) store depletion is governed by several events, which include the redistributions and accumulations of STIM1 and Orai1 into overlapping puncta at peripheral cellular sites, resulting in direct protein-protein interactions between the two proteins. In this chapter, I review the molecular features of the STIM and Orai proteins that regulate the gating and ion conduction mechanisms of CRAC channels.


Asunto(s)
Canales de Calcio/fisiología , Señalización del Calcio , Animales , Calcio/metabolismo , Canales de Calcio/química , Retículo Endoplásmico/metabolismo , Humanos , Activación del Canal Iónico , Proteínas de la Membrana/fisiología , Proteínas de Neoplasias/fisiología , Proteína ORAI1 , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Molécula de Interacción Estromal 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA