Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Circulation ; 150(6): 451-465, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38682338

RESUMEN

BACKGROUND: Most organs are maintained lifelong by resident stem/progenitor cells. During development and regeneration, lineage-specific stem/progenitor cells can contribute to the growth or maintenance of different organs, whereas fully differentiated mature cells have less regenerative potential. However, it is unclear whether vascular endothelial cells (ECs) are also replenished by stem/progenitor cells with EC-repopulating potential residing in blood vessels. It has been reported recently that some EC populations possess higher clonal proliferative potential and vessel-forming capacity compared with mature ECs. Nevertheless, a marker to identify vascular clonal repopulating ECs (CRECs) in murine and human individuals is lacking, and, hence, the mechanism for the proliferative, self-renewal, and vessel-forming potential of CRECs is elusive. METHODS: We analyzed colony-forming, self-renewal, and vessel-forming potential of ABCG2 (ATP binding cassette subfamily G member 2)-expressing ECs in human umbilical vessels. To study the contribution of Abcg2-expressing ECs to vessel development and regeneration, we developed Abcg2CreErt2;ROSA TdTomato mice and performed lineage tracing during mouse development and during tissue regeneration after myocardial infarction injury. RNA sequencing and chromatin methylation chromatin immunoprecipitation followed by sequencing were conducted to study the gene regulation in Abcg2-expressing ECs. RESULTS: In human and mouse vessels, ECs with higher ABCG2 expression (ABCECs) possess higher clonal proliferative potential and in vivo vessel-forming potential compared with mature ECs. These cells could clonally contribute to vessel formation in primary and secondary recipients after transplantation. These features of ABCECs meet the criteria of CRECs. Results from lineage tracing experiments confirm that Abcg2-expressing CRECs (AbcCRECs) contribute to arteries, veins, and capillaries in cardiac tissue development and vascular tissue regeneration after myocardial infarction. Transcriptome and epigenetic analyses reveal that a gene expression signature involved in angiogenesis and vessel development is enriched in AbcCRECs. In addition, various angiogenic genes, such as Notch2 and Hey2, are bivalently modified by trimethylation at the 4th and 27th lysine residue of histone H3 (H3K4me3 and H3K27me3) in AbcCRECs. CONCLUSIONS: These results are the first to establish that a single prospective marker identifies CRECs in mice and human individuals, which holds promise to provide new cell therapies for repair of damaged vessels in patients with endothelial dysfunction.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Animales , Humanos , Ratones , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/citología , Neovascularización Fisiológica , Proliferación Celular , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Regeneración , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ratones Transgénicos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/citología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Linaje de la Célula
2.
JCI Insight ; 8(5)2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36692963

RESUMEN

Most circulating endothelial cells are apoptotic, but rare circulating endothelial colony-forming cells (C-ECFCs), also known as blood outgrowth endothelial cells, with proliferative and vasculogenic activity can be cultured; however, the origin and naive function of these C-ECFCs remains obscure. Herein, detailed lineage tracing revealed murine C-ECFCs emerged in the early postnatal period, displayed high vasculogenic potential with enriched frequency of clonal proliferative cells compared with tissue-resident ECFCs, and were not committed to or derived from the BM hematopoietic system but from tissue-resident ECFCs. In humans, C-ECFCs were present in the CD34bright cord blood mononuclear subset, possessed proliferative potential and in vivo vasculogenic function in a naive or cultured state, and displayed a single cell transcriptome sharing some umbilical venous endothelial cell features, such as a higher protein C receptor and extracellular matrix gene expression. This study provides an advance for the field by identifying the origin, naive function, and antigens to prospectively isolate C-ECFCs for translational studies.


Asunto(s)
Células Endoteliales , Matriz Extracelular , Humanos , Animales , Ratones , Estudios Prospectivos , Células Clonales , Receptor de Proteína C Endotelial
3.
Stem Cell Reports ; 9(5): 1573-1587, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29033304

RESUMEN

Human endothelial colony-forming cells (ECFCs) represent a promising source of adult stem cells for vascular repair, yet their regenerative capacity is limited. Here, we set out to understand the molecular mechanism restricting the repair function of ECFCs. We found that key pro-angiogenic pathways are repressed in ECFCs due to the presence of bivalent (H3K27me3/H3K4me3) epigenetic marks, which decreases the cells' regenerative potential. Importantly, ex vivo treatment with a combination of epigenetic drugs that resolves bivalent marks toward the transcriptionally active H3K4me3 state leads to the simultaneous activation of multiple pro-angiogenic signaling pathways (VEGFR, CXCR4, WNT, NOTCH, SHH). This in turn results in improved capacity of ECFCs to form capillary-like networks in vitro and in vivo. Furthermore, restoration of perfusion is accelerated upon transplantation of drug-treated ECFCs in a model of hindlimb ischemia. Thus, ex vivo treatment with epigenetic drugs increases the vascular repair properties of ECFCs through transient activation of pro-angiogenic signaling pathways.


Asunto(s)
Células Progenitoras Endoteliales/metabolismo , Epigénesis Genética , Neovascularización Fisiológica , Transducción de Señal , Animales , Células Cultivadas , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/trasplante , Femenino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Miembro Posterior/irrigación sanguínea , Humanos , Isquemia/terapia , Ratones , Ratones Endogámicos NOD , Ratones SCID , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Trasplante de Células Madre , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
4.
Microvasc Res ; 101: 72-81, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26122935

RESUMEN

Human cord blood (CB) is enriched in circulating endothelial colony forming cells (ECFCs) that display high proliferative potential and in vivo vessel forming ability. Since diminished ECFC survival is known to dampen the vasculogenic response in vivo, we tested how long implanted ECFC survive and generate vessels in three-dimensional (3D) type I collagen matrices in vitro and in vivo. We hypothesized that human platelet lysate (HPL) would promote cell survival and enhance vasculogenesis in the 3D collagen matrices. We report that the percentage of ECFC co-cultured with HPL that were alive was significantly enhanced on days 1 and 3 post-matrix formation, compared to ECFC alone containing matrices. Also, co-culture of ECFC with HPL displayed significantly more vasculogenic activity compared to ECFC alone and expressed significantly more pro-survival molecules (pAkt, p-Bad and Bcl-xL) in the 3D collagen matrices in vitro. Treatment with Akt1 inhibitor (A-674563), Akt2 inhibitor (CCT128930) and Bcl-xL inhibitor (ABT-263/Navitoclax) significantly decreased the cell survival and vasculogenesis of ECFC co-cultured with or without HPL and implicated activation of the Akt1 pathway as the critical mediator of the HPL effect on ECFC in vitro. A significantly greater average vessel number and total vascular area of human CD31(+) vessels were present in implants containing ECFC and HPL, compared to the ECFC alone implants in vivo. We conclude that implantation of ECFC with HPL in vivo promotes vasculogenesis and augments blood vessel formation via diminishing apoptosis of the implanted ECFC.


Asunto(s)
Plaquetas/citología , Plaquetas/metabolismo , Colágeno/química , Trasplante de Células Madre de Sangre del Cordón Umbilical , Sangre Fetal/citología , Neovascularización Fisiológica/fisiología , Animales , Apoptosis , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/metabolismo , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Madre/citología
5.
Nat Biotechnol ; 32(11): 1151-1157, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25306246

RESUMEN

The ability to differentiate human pluripotent stem cells into endothelial cells with properties of cord-blood endothelial colony-forming cells (CB-ECFCs) may enable the derivation of clinically relevant numbers of highly proliferative blood vessel-forming cells to restore endothelial function in patients with vascular disease. We describe a protocol to convert human induced pluripotent stem cells (hiPSCs) or embryonic stem cells (hESCs) into cells similar to CB-ECFCs at an efficiency of >10(8) ECFCs produced from each starting pluripotent stem cell. The CB-ECFC-like cells display a stable endothelial phenotype with high clonal proliferative potential and the capacity to form human vessels in mice and to repair the ischemic mouse retina and limb, and they lack teratoma formation potential. We identify Neuropilin-1 (NRP-1)-mediated activation of KDR signaling through VEGF165 as a critical mechanism for the emergence and maintenance of CB-ECFC-like cells.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/citología , Células Endoteliales/citología , Células Madre Pluripotentes/citología , Animales , Proliferación Celular/genética , Células Endoteliales/metabolismo , Sangre Fetal/citología , Humanos , Ratones , Neuropilina-1/metabolismo , Células Madre/citología , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
Am J Physiol Lung Cell Mol Physiol ; 306(10): L915-24, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24705722

RESUMEN

Exoenzyme Y (ExoY) is a Pseudomonas aeruginosa toxin that is introduced into host cells through the type 3 secretion system (T3SS). Once inside the host cell cytoplasm, ExoY generates cyclic nucleotides that cause tau phosphorylation and microtubule breakdown. Microtubule breakdown causes interendothelial cell gap formation and tissue edema. Although ExoY transiently induces interendothelial cell gap formation, it remains unclear whether ExoY prevents repair of the endothelial cell barrier. Here, we test the hypothesis that ExoY intoxication impairs recovery of the endothelial cell barrier following gap formation, decreasing migration, proliferation, and lung repair. Pulmonary microvascular endothelial cells (PMVECs) were infected with P. aeruginosa strains for 6 h, including one possessing an active ExoY (PA103 exoUexoT::Tc pUCPexoY; ExoY(+)), one with an inactive ExoY (PA103ΔexoUexoT::Tc pUCPexoY(K81M); ExoY(K81M)), and one that lacks PcrV required for a functional T3SS (ΔPcrV). ExoY(+) induced interendothelial cell gaps, whereas ExoY(K81M) and ΔPcrV did not promote gap formation. Following gap formation, bacteria were removed and endothelial cell repair was examined. PMVECs were unable to repair gaps even 3-5 days after infection. Serum-stimulated growth was greatly diminished following ExoY intoxication. Intratracheal inoculation of ExoY(+) and ExoY(K81M) caused severe pneumonia and acute lung injury. However, whereas the pulmonary endothelial cell barrier was functionally improved 1 wk following ExoY(K81M) infection, pulmonary endothelium was unable to restrict the hyperpermeability response to elevated hydrostatic pressure following ExoY(+) infection. In conclusion, ExoY is an edema factor that chronically impairs endothelial cell barrier integrity following lung injury.


Asunto(s)
Proteínas Bacterianas/fisiología , Proliferación Celular , Células Endoteliales/microbiología , Glucosiltransferasas/fisiología , Neumonía Bacteriana/inmunología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/enzimología , Animales , AMP Cíclico/metabolismo , Edema/inmunología , Edema/microbiología , Células Endoteliales/inmunología , Células Endoteliales/fisiología , Interacciones Huésped-Patógeno , Pulmón/irrigación sanguínea , Pulmón/inmunología , Pulmón/microbiología , Lesión Pulmonar/inmunología , Lesión Pulmonar/microbiología , Masculino , Microvasos/patología , Microvasos/fisiopatología , Neumonía Bacteriana/microbiología , Neumonía Bacteriana/patología , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/fisiología , Ratas
7.
J Vis Exp ; (62)2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22526095

RESUMEN

Longstanding views of new blood vessel formation via angiogenesis, vasculogenesis, and arteriogenesis have been recently reviewed. The presence of circulating endothelial progenitor cells (EPCs) were first identified in adult human peripheral blood by Asahara et al. in 1997 bringing an infusion of new hypotheses and strategies for vascular regeneration and repair. EPCs are rare but normal components of circulating blood that home to sites of blood vessel formation or vascular remodeling, and facilitate either postnatal vasculogenesis, angiogenesis, or arteriogenesis largely via paracrine stimulation of existing vessel wall derived cells. No specific marker to identify an EPC has been identified, and at present the state of the field is to understand that numerous cell types including proangiogenic hematopoietic stem and progenitor cells, circulating angiogenic cells, Tie2+ monocytes, myeloid progenitor cells, tumor associated macrophages, and M2 activated macrophages participate in stimulating the angiogenic process in a variety of preclinical animal model systems and in human subjects in numerous disease states. Endothelial colony forming cells (ECFCs) are rare circulating viable endothelial cells characterized by robust clonal proliferative potential, secondary and tertiary colony forming ability upon replating, and ability to form intrinsic in vivo vessels upon transplantation into immunodeficient mice. While ECFCs have been successfully isolated from the peripheral blood of healthy adult subjects, umbilical cord blood (CB) of healthy newborn infants, and vessel wall of numerous human arterial and venous vessels. CB possesses the highest frequency of ECFCs that display the most robust clonal proliferative potential and form durable and functional blood vessels in vivo. While the derivation of ECFC from adult peripheral blood has been presented, here we describe the methodologies for the derivation, cloning, expansion, and in vitro as well as in vivo characterization of ECFCs from the human umbilical CB.


Asunto(s)
Técnicas Citológicas/métodos , Células Endoteliales/citología , Sangre Fetal/citología , Células Madre/citología , Adulto , Antígenos CD/biosíntesis , Células Clonales , Humanos , Fenotipo
8.
Blood ; 117(18): 4773-7, 2011 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-21393480

RESUMEN

Cryopreservation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) is crucial for cord blood (CB) banking and transplantation. We evaluated recovery of functional HPC cryopreserved as mononuclear or unseparated cells for up to 23.5 years compared with prefreeze values of the same CB units. Highly efficient recovery (80%-100%) was apparent for granulocyte-macrophage and multipotential hematopoietic progenitors, although some collections had reproducible low recovery. Proliferative potential, response to multiple cytokines, and replating of HPC colonies was extensive. CD34(+) cells isolated from CB cryopreserved for up to 21 years had long-term (≥ 6 month) engrafting capability in primary and secondary immunodeficient mice reflecting recovery of long-term repopulating, self-renewing HSCs. We recovered functionally responsive CD4(+) and CD8(+) T lymphocytes, generated induced pluripotent stem (iPS) cells with differentiation representing all 3 germ cell lineages in vitro and in vivo, and detected high proliferative endothelial colony forming cells, results of relevance to CB biology and banking.


Asunto(s)
Conservación de la Sangre , Criopreservación , Sangre Fetal/citología , Células Madre Hematopoyéticas/citología , Células Madre Pluripotentes Inducidas/citología , Animales , Ensayo de Unidades Formadoras de Colonias , Células Endoteliales/citología , Sangre Fetal/trasplante , Trasplante de Células Madre Hematopoyéticas , Humanos , Técnicas In Vitro , Células Madre Pluripotentes Inducidas/trasplante , Recién Nacido , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Subunidad gamma Común de Receptores de Interleucina/genética , Activación de Linfocitos , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Factores de Tiempo , Trasplante Heterólogo
9.
Curr Opin Organ Transplant ; 15(1): 61-7, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19855280

RESUMEN

PURPOSE OF REVIEW: Inducible pluripotent stem (iPS) cells derived from somatic cells represent a novel renewable source of tissue precursors. The potential of iPS cells is considered to be at least equivalent to that of human embryonic stem cells, facilitating the treatment or cure of diseases such as diabetes mellitus, spinal cord injuries, cardiovascular disease, and neurodegenerative diseases, but with the potential added benefit of evading the adaptive immune response that otherwise limits allogeneic cell-based therapies. This review discusses recent advances in pluripotency induction and the use of iPS cells to produce differentiated cells, while highlighting roadblocks to the widespread use of this technology in the clinical arena. RECENT FINDINGS: Whereas ethical and safety issues surrounding the use of human embryonic stem cells for the treatment of disease continue to be debated, use of iPS cells may be viewed as a more widely acceptable compromise. Since the first descriptions of inducible pluripotency from somatic cells, multiple laboratories have collectively made tremendous strides both in developing alternative, more clinically acceptable, induction strategies and in demonstrating the proof-of-principle that iPS cells can be differentiated into a variety of cell types to reverse mouse models of human disease. SUMMARY: Although the prospect of using patient-specific iPS cells has much appeal from an ethical and immunologic perspective, the limitations of the technology from the standpoint of reprogramming efficiency and therapeutic safety necessitate much more in-depth research before the initiation of human clinical trials.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/trasplante , Regeneración , Trasplante de Células Madre , Ingeniería de Tejidos , Animales , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Regeneración/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Am J Physiol Lung Cell Mol Physiol ; 297(1): L73-83, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19395666

RESUMEN

Soluble adenylyl cyclase toxins, such as Pseudomonas aeruginosa exoY, generate a cAMP pool that retracts cell borders. However, the cytoskeletal basis by which this cAMP signal retracts cell borders is not known. We sought to determine whether activation of chimeric, soluble adenylyl cyclase I/II (sACI/II) reorganizes either microtubules or peripheral actin. Endothelial cells were stably transfected with either green fluorescent protein-labeled alpha-tubulin or beta-actin, and then infected with adenovirus to express sACI/II. Forskolin, which stimulates both the endogenously expressed transmembrane adenylyl cyclases and sACI/II, induced cell retraction accompanied by the reorganization of peripheral microtubules. However, cortical filamentous-actin (f-actin) did not reorganize into stress fibers, and myosin light-chain-20 phosphorylation was decreased. Isoproterenol, which activates endogenous adenylyl cyclases but does not activate sACI/II, did not induce endothelial cell gaps and did not influence microtubule or f-actin architecture. Thus, sACI/II generates a cAMP signal that reorganizes microtubules and induces cell retraction, without inducing f-actin stress fibers. These findings illustrate that endothelial cell gap formation can proceed without f-actin stress fiber formation, and provide mechanistic insight how bacterial adenylyl cyclase toxins reorganize the cytoskeleton to induce cell rounding.


Asunto(s)
Adenilil Ciclasas/metabolismo , Células Endoteliales/citología , Células Endoteliales/enzimología , Microtúbulos/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Colforsina/farmacología , AMP Cíclico/metabolismo , Citosol/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Microtúbulos/química , Microtúbulos/efectos de los fármacos , Solubilidad/efectos de los fármacos , Fibras de Estrés/efectos de los fármacos , Fibras de Estrés/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA