Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Inorg Biochem ; 262: 112749, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39366102

RESUMEN

Three Pd(II)-based complexes of 1,10-phenanthroline and N- or O-coordinating ligands have been synthesised and tested with different relevant biosubstrates like double-stranded DNA, double and triple helix of RNA, DNA G-quadruplexes of different conformations and bovine serum albumin. Here a correlation between N- vs O-coordinating elements and binding mechanism emerged, where the N-coordinating ligands proved to be the most promising. These outcomes were confirmed also in the cellular experiments. The Pd(II) complex with naphthalene-1,8-diamine is the one that is able to be carried by BSA, to strongly bind nucleic acids, to produce reactive oxygen species (ROS) and to show the best cellular performances (poorly toxic towards healthy cells and highly toxic against the cisplatin-resistant cancer cell line). On the opposite, the complex with benzene-1,2-diolate may be sequestered by BSA, weakly binds nucleic acids, does not produce ROS and shows poor cellular activity. The complex with benzene-1,2-diamine stays in between. Other mechanistic details are discussed which show that the biophysical behaviour is the sum of the contribution of aromaticity, charge and N- or O-coordination.

2.
Inorg Chem ; 63(37): 16949-16963, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39226133

RESUMEN

A series of new gold(I) and silver(I) N-heterocyclic carbenes bearing a 1-thio-ß-d-glucose tetraacetate moiety was synthesized and chemically characterized. The compounds' stability and solubility in physiological conditions were investigated employing a multitechnique approach. Interaction studies with biologically relevant proteins, such as superoxide dismutase (SOD) and human serum albumin (HSA), were conducted via UV-vis absorption spectroscopy and high-resolution ESI mass spectrometry. The biological activity of the compounds was evaluated in the A2780 and A2780R (cisplatin-resistant) ovarian cancer cell lines and the HSkMC (human skeletal muscle) healthy cell line. Inhibition studies of the selenoenzyme thioredoxin reductase (TrxR) were also carried out. The results highlighted that the gold complexes are more stable in aqueous environment and capable of interaction with SOD and HSA. Moreover, these carbenes strongly inhibited the TrxR activity. In contrast, the silver ones underwent structural alterations in the aqueous medium and showed greater antiproliferative activity.


Asunto(s)
Antineoplásicos , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Oro , Compuestos Heterocíclicos , Metano , Plata , Reductasa de Tiorredoxina-Disulfuro , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Plata/química , Plata/farmacología , Oro/química , Oro/farmacología , Metano/análogos & derivados , Metano/química , Metano/farmacología , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/síntesis química , Proliferación Celular/efectos de los fármacos , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular , Relación Estructura-Actividad , Línea Celular Tumoral , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/antagonistas & inhibidores
3.
Chemistry ; : e202402647, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158114

RESUMEN

Metals have been used in medicine for centuries. However, it was not until much later that the effects of inorganic drugs could be rationalized from a mechanistic point of view. Today, thanks to the technologies available, this approach has been functionally developed and implemented. It has been found that there is probably no single biological target for the pharmacological effects of most inorganic drugs. Herein, we present an overview of some integrated and multi-technique approaches to elucidate the molecular interactions underlying the biological effects of metallodrugs. On this premise, selected examples are used to illustrate how the information obtained on metal-based drugs and their respective mechanisms can become relevant for applications in fields other than medicine. For example, some well-known metallodrugs, which have been shown to bind specific amino acid residues of proteins, can be used to solve problems related to protein structure elucidation in crystallographic studies. Diruthenium tetraacetate can be used to catalyze the conversion of hydroxylamines to nitrones with a high selectivity when bound to lysozyme. Finally, a case study is presented in which an unprecedented palladium/arsenic-mediated catalytic cycle for nitrile hydration was discovered thanks to previous studies on the solution chemistry of the anticancer compound arsenoplatin-1 (AP-1).

4.
Dalton Trans ; 53(23): 9700-9714, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38775704

RESUMEN

Silver compounds are mainly studied as antimicrobial agents, but they also have anticancer properties, with the latter, in some cases, being better than their gold counterparts. Herein, we analyse the first example of a new Ag(I)-biscarbene that can bind non-canonical structures of DNA, more precisely G-quadruplexes (G4), with different binding signatures depending on the type of G4. Moreover, we show that this Ag-based carbene binds the i-motif DNA structure. Alternatively, its Au(I) counterpart, which was investigated for comparison, stabilises mitochondrial G4. Theoretical in silico studies elucidated the details of different binding modes depending on the geometry of G4. The two complexes showed increased cytotoxic activity compared to cisplatin, overcoming its resistance in ovarian cancer. The binding of these new drug candidates with other relevant biosubstrates was studied to afford a more complete picture of their possible targets. In particular, the Ag(I) complex preferentially binds DNA structures over RNA structures, with higher binding constants for the non-canonical nucleic acids with respect to natural calf thymus DNA. Regarding possible protein targets, its interaction with the albumin model protein BSA was also tested.


Asunto(s)
ADN , G-Cuádruplex , Plata , ADN/química , Plata/química , Humanos , Metano/química , Metano/análogos & derivados , Antineoplásicos/química , Antineoplásicos/farmacología , Bovinos , Animales , Albúmina Sérica Bovina/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Colorantes Fluorescentes/química
5.
Pharmaceutics ; 16(2)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38399332

RESUMEN

The use of platinum-based anticancer drugs, such as cisplatin, oxaliplatin, and carboplatin, is a common frontline option in cancer management, but they have debilitating side effects and can lead to drug resistance. Combination therapy with other chemotherapeutic agents, such as capecitabine and gemcitabine, has been explored. One approach to overcome these limitations is the modification of traditional Pt(II) drugs to obtain new molecules with an improved pharmacological profile, such as Pt(IV) prodrugs. The design, synthesis, and characterization of two novel Pt(IV) prodrugs based on oxaliplatin bearing the anticancer drugs gemcitabine or capecitabine in the axial positions have been reported. These complexes were able to dissociate into their constituents to promote cell death and induce apoptosis and cell cycle blockade in a representative colorectal cancer cell model. Specifically, the complex bearing gemcitabine resulted in being the most active on the HCT116 colorectal cancer cell line with an IC50 value of 0.49 ± 0.04. A pilot study on the encapsulation of these complexes in biocompatible PLGA-PEG nanoparticles is also included to confirm the retention of the pharmacological properties and cellular drug uptake, opening up to the possible delivery of the studied complexes through their nanoformulation.

6.
J Inorg Biochem ; 251: 112452, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38070433

RESUMEN

Three gold(I) linear compounds, sharing the general formula [AuI(LPh3)], have been synthesized and characterized. The nature of the ligand has been modified by moving down among some of the elements of group 15, i.e. phosphorus, arsenic and antimony. The structures of derived compounds have been solved through XRD and the reactivity behaviour towards selected biomolecules has been investigated through a multi-technique approach involving NMR, high-resolution mass spectrometry and IR. Moreover, the biological activity of the investigated compounds has been comparatively analyzed through classical methodologies and the disclosed differences are discussed in detail.


Asunto(s)
Antineoplásicos , Auranofina , Auranofina/química , Antimonio/farmacología , Ligandos , Antineoplásicos/farmacología , Antineoplásicos/química
7.
Inorg Chem ; 62(26): 10389-10396, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37342994

RESUMEN

Auranofin, a gold(I)-based complex, is under clinical trials for application as an anticancer agent for the treatment of nonsmall-cell lung cancer and ovarian cancer. In the past years, different derivatives have been developed, modifying gold linear ligands in the search for new gold complexes endowed with a better pharmacological profile. Recently, a panel of four gold(I) complexes, inspired by the clinically established compound auranofin, was reported by our research group. As described, all compounds possess an [Au{P(OMe)3}]+ cationic moiety, in which the triethylphosphine of the parent compound auranofin was replaced with an oxygen-rich trimethylphosphite ligand. The gold(I) linear coordination geometry was complemented by Cl-, Br-, I-, and the auranofin-like thioglucose tetraacetate ligand. As previously reported, despite their close similarity to auranofin, the panel compounds exhibited some peculiar and distinctive features, such as lower log P values which can induce relevant differences in the overall pharmacokinetic profiles. To get better insight into the P-Au strength and stability, an extensive study was carried out for relevant biological models, including three different vasopressin peptide analogues and cysteine, using 31P NMR and LC-ESI-MS. A DFT computational study was also carried out for a better understanding of the theoretical fundamentals of the disclosed differences with regard to triethylphosphine parent compounds.


Asunto(s)
Antineoplásicos , Auranofina , Auranofina/farmacología , Auranofina/química , Ligandos , Oro/química , Antineoplásicos/farmacología , Espectroscopía de Resonancia Magnética
8.
Molecules ; 28(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36770719

RESUMEN

A panel of four novel gold(I) complexes, inspired by the clinically established gold drug auranofin (1-Thio-ß-D-glucopyranosatotriethylphosphine gold-2,3,4,6-tetraacetate), was prepared and characterized. All these compounds feature the replacement of the triethylphosphine ligand of the parent compound auranofin with a trimethylphosphite ligand. The linear coordination around the gold(I) center is completed by Cl-, Br-, I- or by the thioglucose tetraacetate ligand (SAtg). The in-solution behavior of these gold compounds as well as their interactions with some representative model proteins were comparatively analyzed through 31PNMR and ESI-MS measurements. Notably, all panel compounds turned out to be stable in aqueous media, but significant differences with respect to auranofin were disclosed in their interactions with a few leading proteins. In addition, the cytotoxic effects produced by the panel compounds toward A2780, A2780R and SKOV-3 ovarian cancer cells were quantitated and found to be in the low micromolar range, since the IC50 of all compounds was found to be between 1 µM and 10 µM. Notably, these novel gold complexes showed large and similar inhibition capabilities towards the key enzyme thioredoxin reductase, again comparable to those of auranofin. The implications of these results for the discovery of new and effective gold-based anticancer agents are discussed.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Fosfitos , Humanos , Femenino , Auranofina/farmacología , Auranofina/química , Oro/química , Línea Celular Tumoral , Ligandos , Antineoplásicos/farmacología , Antineoplásicos/química
9.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674620

RESUMEN

Photoactivatable Pt(IV) prodrugs represent nowadays an intriguing class of potential metal-based drugs, endowed with more chemical inertness in their oxidized form and better selectivity for the target with respect to the clinically established Pt(II) compounds. In fact, they have the possibility to be reduced by light irradiation directly at the site of interest. For this reason, we synthesized a new Pt(IV) complex, [Pt(OCOCH3)3(4'-phenyl-2,2':6',2''-terpyridine)][CF3SO3] (1), that is well soluble in aqueous medium and totally unreactive towards selected model biomolecules until its reduction. The highlight of this work is the rapid and efficient photoreduction of 1 with visible light (460 nm), which leads to its reactive Pt(II) analogue. This behavior was made possible by taking advantage of an efficient catalytic system based on flavin and NADH, which is naturally present in the cellular environment. As a comparison, the reduction of 1 was also studied with simple UV irradiation, but both UV-Vis spectrophotometry and 1H-NMR spectrometry showed that the flavin-catalyzed reduction with visible light was faster. Lastly, the reactivity against two representative biological targets, i.e., human serum albumin and one monofilament oligonucleotide fragment, was evaluated by high-resolution mass spectrometry. The results clearly pointed out that the prodrug 1 did not interact with these targets until its photoreduction to the Pt(II) analogue.


Asunto(s)
Antineoplásicos , Profármacos , Humanos , Antineoplásicos/química , Compuestos Organoplatinos/química , Luz , Espectroscopía de Resonancia Magnética , Profármacos/química
10.
Metallomics ; 15(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36515681

RESUMEN

Diiron vinyliminium complexes constitute a large family of organometallics displaying a promising anticancer potential. The complexes [Fe2Cp2(CO)(µ-CO){µ-η1:η3-C(R3)C(R4)CN(R1)(R2)}]CF3SO3 (2a-c, 4a-d) were synthesized, assessed for their behavior in aqueous solutions (D2O solubility, Log Pow, stability in D2O/Me2SO-d6 mixture at 37°C over 48 h) and investigated for their antiproliferative activity against A2780 and A2780cisR ovarian cancer cell lines and the nontumoral one Balb/3T3 clone A31. Cytotoxicity data collected for 50 vinyliminium complexes were correlated with the structural properties (i.e. the different R1-R4 substituents) using the partial least squares methodology. A clear positive correlation emerged between the octanol-water partition coefficient and the relative antiproliferative activity on ovarian cancer cell lines, both of which appear as uncorrelated to the cancer cell selectivity. However, the different effects played by the R1-R4 substituents allow tracing guidelines for the development of novel, more effective compounds. Based on these results, three additional complexes (4p-r) were designed, synthesized and biologically investigated, revealing their ability to hamper thioredoxin reductase enzyme and to induce cancer cell production of reactive oxygen species.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Línea Celular Tumoral , Ligandos , Cristalografía por Rayos X , Neoplasias Ováricas/tratamiento farmacológico , Especies Reactivas de Oxígeno
11.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36430642

RESUMEN

Auranofin (AF), a gold(I) compound that is currently used for the treatment of rheumatoid arthritis and is in clinical trials for its promising anticancer activity, was encapsulated within the human H-chain and the horse spleen ferritin nanocages using the alkaline disassembly/reassembly protocol. The aim of the work was to highlight possible differences in their drug loading capacity and efficacy. The drug-loaded ferritins were characterized via UV-vis absorption spectroscopy and inductively coupled plasma-atomic emission spectroscopy to assess AF encapsulation and to define the exact amount of gold atoms trapped in the Ft cavity. The crystal structures allowed us to define the nature of AF interaction with both ferritins and to identify the gold binding sites. Moreover, the biological characterization let us to obtain preliminary information on the cytotoxic effect of AF when bound to the human H-chain.


Asunto(s)
Auranofina , Ferritinas , Sistema de Administración de Fármacos con Nanopartículas , Animales , Humanos , Antineoplásicos/química , Auranofina/química , Auranofina/farmacología , Sitios de Unión , Ferritinas/química , Ferritinas/metabolismo , Oro/química , Caballos , Sistema de Administración de Fármacos con Nanopartículas/química , Sistema de Administración de Fármacos con Nanopartículas/farmacología
12.
Dalton Trans ; 51(35): 13527-13539, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36000524

RESUMEN

A novel gold(I) complex inspired by the known medicinal inorganic compounds auranofin and thimerosal, namely ethylthiosalicylate(triethylphosphine)gold(I) (AFETT hereafter), was synthesized and characterised and its structure was resolved through X-ray diffraction. The solution behavior of AFETT and its interactions with two biologically relevant proteins (i.e. human serum albumin and haemoglobin) and with a synthetic dodecapeptide reproducing the C-terminal portion of thioredoxin reductase were comparatively analyzed through 31P NMR and ESI-MS. Remarkable binding properties toward these biomolecules were disclosed. Moreover, the cytotoxic effects produced by AFETT on two ovarian cancer cell lines (A2780 and A2780 R) and one colorectal cancer cell line (HCT116) were analyzed and found to be strong and nearly superimposable to those of auranofin. Interestingly, for both compounds, the ability to induce downregulation of vimentin expression in A2780 R cells was evidenced. Despite its close similarity to auranofin, AFETT is reported to exhibit some peculiar and distinctive features such as a lower lipophilicity, an increased water solubility and a faster reactivity towards the selected target biomolecules. These differences might confer to AFETT significant pharmaceutical and therapeutic advantages over auranofin itself.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Antineoplásicos/química , Auranofina/química , Auranofina/farmacología , Línea Celular Tumoral , Femenino , Oro/química , Humanos
13.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35455422

RESUMEN

ß-lactoglobulin is the major component of whey. Here, the adduct formed upon the reaction of the protein with oxaliplatin (OXA) has been prepared, structurally characterized by X-ray crystallography and electrospray ionization-mass spectrometry, and evaluated as a cytotoxic agent. The data demonstrate that OXA rapidly binds ß-lactoglobulin via coordination with a Met7 side chain upon release of the oxalate ligand. The adduct is significantly more cytotoxic than the free drug and induces apoptosis in cancer cells. Overall, our results suggest that metallodrug/ß-lactoglobulin adducts can be used as anticancer agents and that the protein can be used as a metallodrug delivery system.

14.
Molecules ; 27(8)2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35458776

RESUMEN

Auranofin (AF, hereafter) is an orally administered chrysotherapeutic agent approved for the treatment of rheumatoid arthritis that is being repurposed for various indications including bacterial infections. Its likely mode of action involves the impairment of the TrxR system through the binding of the pharmacophoric cation [AuPEt3]+. Accordingly, a reliable strategy to expand the medicinal profile of AF is the replacement of the thiosugar moiety with different ligands. Herein, we aimed to prepare the AF analogue bearing the acetylcysteine ligand (AF-AcCys, hereafter) and characterize its anti-staphylococcal activity. Biological studies revealed that AF-AcCys retains an antibacterial effect superimposable with that of AF against Staphylococcus aureus, whereas it is about 20 times less effective against Staphylococcus epidermidis. Bioinorganic studies confirmed that upon incubation with human serum albumin, AF-AcCys, similarly to AF, induced protein metalation through the [AuPEt3]+ fragment. Additionally, AF-AcCys appeared capable of binding the dodecapeptide Ac-SGGDILQSGCUG-NH2, corresponding to the tryptic C-terminal fragment (488-499) of hTrxR. To shed light on the pharmacological differences between AF and AF-AcCys, we carried out a comparative experimental stability study and a theoretical estimation of bond dissociation energies, unveiling the higher strength of the Au-S bond in AF-AcCys. From the results, it emerged that the lower lipophilicity of AF-AcCys with respect to AF could be a key feature for its different antibacterial activity. The differences and similarities between AF and AF-AcCys are discussed, alongside the opportunities and consequences that chemical structure modifications imply.


Asunto(s)
Auranofina , Infecciones Estafilocócicas , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Auranofina/química , Auranofina/farmacología , Humanos , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus
15.
Molecules ; 28(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36615466

RESUMEN

Although important progress has been made, cancer still remains a complex disease to treat. Serious side effects, the insurgence of resistance and poor selectivity are some of the problems associated with the classical metal-based anti-cancer therapies currently in clinical use. New treatment approaches are still needed to increase cancer patient survival without cancer recurrence. Herein, we reviewed two promising-at least in our opinion-new strategies to increase the efficacy of transition metal-based complexes. First, we considered the possibility of assembling two biologically active fragments containing different metal centres into the same molecule, thus obtaining a heterobimetallic complex. A critical comparison with the monometallic counterparts was done. The reviewed literature has been divided into two groups: the case of platinum; the case of gold. Secondly, the conjugation of metal-based complexes to a targeting moiety was discussed. Particularly, we highlighted some interesting examples of compounds targeting cancer cell organelles according to a third-order targeting approach, and complexes targeting the whole cancer cell, according to a second-order targeting strategy.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias , Elementos de Transición , Humanos , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Oro/uso terapéutico
16.
J Inorg Biochem ; 226: 111657, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34784565

RESUMEN

Angiogenin (Ang) is a potent angiogenic protein that is overexpressed in many types of cancer at concentration values correlated to the tumor aggressiveness. Here, by means of an integrated multi-technique approach based on crystallographic, spectrometric and spectroscopic analyses, we demonstrate that the anti-cancer drug oxaliplatin efficiently binds angiogenin. Microscopy cellular studies, carried out on the prostate cancer cell (PC-3) line , show that oxaliplatin inhibits the angiogenin prompting effect on cell proliferation and migration, which are typical features of angiogenesis process. Overall, our findings point to angiogenin as a possible target of oxaliplatin, thus suggesting a potential novel mechanism for the antineoplastic activity of this platinum drug and opening the avenue to novel approaches in the combined anti-cancer anti-angiogenic therapy.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Oxaliplatino/farmacología , Neoplasias de la Próstata , Ribonucleasa Pancreática/metabolismo , Humanos , Masculino , Células PC-3 , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo
17.
Dalton Trans ; 50(45): 16464-16467, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34729572

RESUMEN

Human cytoplasmic ferritins are heteropolymers of H and L subunits containing a catalytic ferroxidase center and a nucleation site for iron biomineralization, respectively. Here, ESI-MS successfully detected labile metal-protein interactions revealing the formation of tetra- and octa-iron clusters bound to L subunits, as previously underscored by X-ray crystallography.


Asunto(s)
Apoferritinas/química , Hierro/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Modelos Moleculares , Peso Molecular
18.
Dalton Trans ; 50(43): 15760-15777, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34704998

RESUMEN

The reactions of the dimeric complexes [RuX2(η6-p-cymene)]2 (X = Br, I, SCN) with L-proline (ProH) and trans-4-hydroxy-L-proline (HypH), in methanol in the presence of NaOH, afforded [RuX(κ2N,O-Pro)(η6-p-cymene)] (X = Br, 1b; I, 1c; SCN, 1d) and [RuX(κ2N,O-Hyp)(η6-p-cymene)] (X = Br, 2b; I, 2c; SCN, 2d), respectively. Alternatively, the one-pot, sequential addition of the appropriate α-amino carboxylate and X- salt to [RuCl2(η6-p-cymene)]2 led to [RuX(κ2N,O-Pro)(η6-p-cymene)] (X = N3, 1e; NO2, 1f; CN 1g) and [Ru(N3)(κ2N,O-Hyp)(η6-p-cymene)] (2e). Complexes [Ru(κ3N,O,O'-O2CCH(NH2)(R)O)(η6-p-cymene)] (R = CH2, 3h; R = CHMe, 4h; R = CH2CH2, 5h) were prepared from the reaction of [RuCl2(η6-p-cymene)]2 with the appropriate α-amino acid and NaOH in refluxing isopropanol. Treatment of the L-serine (SerH2) derivative [RuCl(κ2N,O-SerH)(η6-p-cymene)] (3a) with 1,3,5-triaza-7-phosphaadamantane (PTA) in water at reflux produced [Ru(κ2N,O-Ser)(κP-PTA)(η6-p-cymene)]Cl ([3i]Cl). The products were isolated in good to excellent yields, and were characterized by elemental analysis, IR and multinuclear NMR spectroscopy. The structures of 1f and 2b-e were ascertained by X-ray diffraction studies. The behaviour of the complexes in water and cell culture medium was investigated by multinuclear NMR and UV-Vis spectroscopy, revealing a considerable influence of the monodentate ligand on the aqueous chemistry. Complexes 1d-e, 2d-e, 3h, 4h and [3i]Cl, showing substantial inertness in aqueous media, were assessed for their cytotoxicity towards A2780 and A2780cisR cancer cell lines and the noncancerous HEK 293T cell line. A selection of compounds was also investigated for Ru uptake in A2780 cells and interactions with cytochrome c as a model protein. Combined, these studies provide insights into the previously debated role of the 'leaving' ligand on the biological activity of Ru(II) arene α-amino acid complexes.


Asunto(s)
Rutenio
19.
Pharmaceutics ; 13(8)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34452119

RESUMEN

A series of 16 novel diiron complexes of general formula [Fe2Cp2(CO)(µ-CO){µ-η1:η3-C(R')C(R″)CN(R)(Y)}]CF3SO3 (2-7), bearing different substituents on the bridging vinyliminium ligand, was synthesized in 69-95% yields from the reactions of diiron µ-aminocarbyne precursors with various alkynes. The products were characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy; moreover the X-ray structures of 2c (R = Y = CH2Ph, R' = R″ = Me) and 3a (R = CH2CH=CH2, Y = R' = Me, R″ = H) were ascertained by single-crystal X-ray diffraction studies. NMR and UV-Vis methods were used to assess the D2O solubility, the stability in aqueous solution at 37 °C and the octanol-water partition coefficients of the complexes. A screening study evidenced a potent cytotoxicity of 2-7 against the A2780 cancer cell line, with a remarkable selectivity compared to the nontumoral Balb/3T3 cell line; complex 4c (R = Cy, Y = R' = R″ = Me) revealed as the most performant of the series. The antiproliferative activity of a selection of complexes was also assessed on the cisplatin-resistant A2780cisR cancer cell line, and these complexes were capable of inducing a significant ROS production. Moreover, ESI-MS experiments indicated the absence of interaction of selected complexes with cytochrome c and the potentiality to inhibit the thioredoxin reductase enzyme (TrxR).

20.
Chemistry ; 27(59): 14690-14701, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34343376

RESUMEN

Ferritins are nanocage proteins that store iron ions in their central cavity as hydrated ferric oxide biominerals. In mammals, further the L (light) and H (heavy) chains constituting cytoplasmic maxi-ferritins, an additional type of ferritin has been identified, the mitochondrial ferritin (MTF). Human MTF (hMTF) is a functional homopolymeric H-like ferritin performing the ferroxidase activity in its ferroxidase site (FS), in which Fe(II) is oxidized to Fe(III) in the presence of dioxygen. To better investigate its ferroxidase properties, here we performed time-lapse X-ray crystallography analysis of hMTF, providing structural evidence of how iron ions interact with hMTF and of their binding to the FS. Transient iron binding sites, populating the pathway along the cage from the iron entry channel to the catalytic center, were also identified. Furthermore, our kinetic data at variable iron loads indicate that the catalytic iron oxidation reaction occurs via a diferric peroxo intermediate followed by the formation of ferric-oxo species, with significant differences with respect to human H-type ferritin.


Asunto(s)
Ceruloplasmina , Compuestos Férricos , Animales , Apoferritinas/metabolismo , Sitios de Unión , Ceruloplasmina/metabolismo , Ferritinas/metabolismo , Humanos , Hierro/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA