Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 21(17)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882917

RESUMEN

The nuclear export receptor CRM1 (XPO1) recognizes and binds specific sequence motifs termed nuclear export signals (NESs) in cargo proteins. About 200 NES motifs have been identified, but over a thousand human proteins are potential CRM1 cargos, and most of their NESs remain to be identified. On the other hand, the interaction of NES peptides with the "NES-binding groove" of CRM1 was studied in detail using structural and biochemical analyses, but a better understanding of CRM1 function requires further investigation of how the results from these in vitro studies translate into actual NES export in a cellular context. Here we show that a simple cellular assay, based on a recently described reporter (SRVB/A), can be applied to identify novel potential NESs motifs, and to obtain relevant information on different aspects of CRM1-mediated NES export. Using cellular assays, we first map 19 new sequence motifs with nuclear export activity in 14 cancer-related proteins that are potential CRM1 cargos. Next, we investigate the effect of mutations in individual NES-binding groove residues, providing further insight into CRM1-mediated NES export. Finally, we extend the search for CRM1-dependent NESs to a recently uncovered, but potentially vast, set of small proteins called micropeptides. By doing so, we report the first NES-harboring human micropeptides.


Asunto(s)
Genes Reporteros , Carioferinas/metabolismo , Mutación , Proteínas de Neoplasias/metabolismo , Señales de Exportación Nuclear , Fragmentos de Péptidos/análisis , Receptores Citoplasmáticos y Nucleares/metabolismo , Transporte Activo de Núcleo Celular , Secuencias de Aminoácidos , Células HeLa , Humanos , Carioferinas/genética , Proteínas de Neoplasias/genética , Neoplasias , Receptores Citoplasmáticos y Nucleares/genética , Proteína Exportina 1
2.
Methods Mol Biol ; 2051: 133-143, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31552627

RESUMEN

Mass spectrometry is extremely efficient for sequencing small peptides generated by, for example, a trypsin digestion of a complex mixture. Current instruments have the capacity to generate 50-100 K MSMS spectra from a single run. Of these ~30-50% is typically assigned to peptide matches on a 1% FDR threshold. The remaining spectra need more research to explain. We address here whether the 30-50% matched spectra provide consensus matches when using different database-dependent search pipelines. Although the majority of the spectra peptide assignments concur across search engines, our conclusion is that database-dependent search engines still require improvements.


Asunto(s)
Bases de Datos de Proteínas , Espectrometría de Masas/métodos , Péptidos/análisis , Motor de Búsqueda , Fragmentos de Péptidos/análisis , Espectrometría de Masas en Tándem
3.
Methods Mol Biol ; 2051: 145-159, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31552628

RESUMEN

Shotgun proteomics is the method of choice for large-scale protein identification. However, the use of a robust statistical workflow to validate such identification is mandatory to minimize false matches, ambiguities, and amplification of error rates from spectra to proteins. In this chapter we emphasize the key concepts to take into account when processing the output of a search engine to obtain reliable peptide or protein identifications. We assume that the reader is already familiar with tandem mass spectrometry so we can focus on the use of statistical confidence methods. After introducing the key concepts we present different software tools and how to use them with an example dataset.


Asunto(s)
Biología Computacional , Péptidos/análisis , Proteínas/análisis , Proteómica/métodos , Motor de Búsqueda , Programas Informáticos , Bases de Datos de Proteínas , Espectrometría de Masas en Tándem
4.
Cancer Discov ; 9(10): 1452-1467, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31285298

RESUMEN

Altered expression of XPO1, the main nuclear export receptor in eukaryotic cells, has been observed in cancer, and XPO1 has been a focus of anticancer drug development. However, mechanistic evidence for cancer-specific alterations in XPO1 function is lacking. Here, genomic analysis of 42,793 cancers identified recurrent and previously unrecognized mutational hotspots in XPO1. XPO1 mutations exhibited striking lineage specificity, with enrichment in a variety of B-cell malignancies, and introduction of single amino acid substitutions in XPO1 initiated clonal, B-cell malignancy in vivo. Proteomic characterization identified that mutant XPO1 altered the nucleocytoplasmic distribution of hundreds of proteins in a sequence-specific manner that promoted oncogenesis. XPO1 mutations preferentially sensitized cells to inhibitors of nuclear export, providing a biomarker of response to this family of drugs. These data reveal a new class of oncogenic alteration based on change-of-function mutations in nuclear export signal recognition and identify therapeutic targets based on altered nucleocytoplasmic trafficking. SIGNIFICANCE: Here, we identify that heterozygous mutations in the main nuclear exporter in eukaryotic cells, XPO1, are positively selected in cancer and promote the initiation of clonal B-cell malignancies. XPO1 mutations alter nuclear export signal recognition in a sequence-specific manner and sensitize cells to compounds in clinical development inhibiting XPO1 function.This article is highlighted in the In This Issue feature, p. 1325.


Asunto(s)
Transformación Celular Neoplásica , Señales de Exportación Nuclear , Transporte Activo de Núcleo Celular , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Expresión Génica , Genes bcl-2 , Genes myc , Humanos , Carioferinas/química , Carioferinas/genética , Carioferinas/metabolismo , Leucemia de Células B/genética , Leucemia de Células B/metabolismo , Leucemia de Células B/mortalidad , Leucemia de Células B/patología , Ratones , Mutación , Especificidad de Órganos/genética , Unión Proteica , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Relación Estructura-Actividad , Proteína Exportina 1
5.
J Proteome Res ; 16(12): 4374-4390, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28960077

RESUMEN

The Human Proteome Project (HPP) aims deciphering the complete map of the human proteome. In the past few years, significant efforts of the HPP teams have been dedicated to the experimental detection of the missing proteins, which lack reliable mass spectrometry evidence of their existence. In this endeavor, an in depth analysis of shotgun experiments might represent a valuable resource to select a biological matrix in design validation experiments. In this work, we used all the proteomic experiments from the NCI60 cell lines and applied an integrative approach based on the results obtained from Comet, Mascot, OMSSA, and X!Tandem. This workflow benefits from the complementarity of these search engines to increase the proteome coverage. Five missing proteins C-HPP guidelines compliant were identified, although further validation is needed. Moreover, 165 missing proteins were detected with only one unique peptide, and their functional analysis supported their participation in cellular pathways as was also proposed in other studies. Finally, we performed a combined analysis of the gene expression levels and the proteomic identifications from the common cell lines between the NCI60 and the CCLE project to suggest alternatives for further validation of missing protein observations.


Asunto(s)
Proteoma/análisis , Proteómica/métodos , Motor de Búsqueda , Línea Celular Tumoral , Humanos , Bases del Conocimiento , Proteínas/análisis , Programas Informáticos
6.
Sci Rep ; 6: 25869, 2016 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-27174732

RESUMEN

Large-scale sequencing projects are uncovering a growing number of missense mutations in human tumors. Understanding the phenotypic consequences of these alterations represents a formidable challenge. In silico prediction of functionally relevant amino acid motifs disrupted by cancer mutations could provide insight into the potential impact of a mutation, and guide functional tests. We have previously described Wregex, a tool for the identification of potential functional motifs, such as nuclear export signals (NESs), in proteins. Here, we present an improved version that allows motif prediction to be combined with data from large repositories, such as the Catalogue of Somatic Mutations in Cancer (COSMIC), and to be applied to a whole proteome scale. As an example, we have searched the human proteome for candidate NES motifs that could be altered by cancer-related mutations included in the COSMIC database. A subset of the candidate NESs identified was experimentally tested using an in vivo nuclear export assay. A significant proportion of the selected motifs exhibited nuclear export activity, which was abrogated by the COSMIC mutations. In addition, our search identified a cancer mutation that inactivates the NES of the human deubiquitinase USP21, and leads to the aberrant accumulation of this protein in the nucleus.


Asunto(s)
Mutación Missense , Neoplasias/metabolismo , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Biología Computacional/métodos , Simulación por Computador , Humanos , Neoplasias/genética , Señales de Exportación Nuclear , Proteoma/química , Proteoma/genética , Programas Informáticos
7.
BMC Bioinformatics ; 13: 288, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23126499

RESUMEN

BACKGROUND: Protein inference from peptide identifications in shotgun proteomics must deal with ambiguities that arise due to the presence of peptides shared between different proteins, which is common in higher eukaryotes. Recently data independent acquisition (DIA) approaches have emerged as an alternative to the traditional data dependent acquisition (DDA) in shotgun proteomics experiments. MSE is the term used to name one of the DIA approaches used in QTOF instruments. MSE data require specialized software to process acquired spectra and to perform peptide and protein identifications. However the software available at the moment does not group the identified proteins in a transparent way by taking into account peptide evidence categories. Furthermore the inspection, comparison and report of the obtained results require tedious manual intervention. Here we report a software tool to address these limitations for MSE data. RESULTS: In this paper we present PAnalyzer, a software tool focused on the protein inference process of shotgun proteomics. Our approach considers all the identified proteins and groups them when necessary indicating their confidence using different evidence categories. PAnalyzer can read protein identification files in the XML output format of the ProteinLynx Global Server (PLGS) software provided by Waters Corporation for their MSE data, and also in the mzIdentML format recently standardized by HUPO-PSI. Multiple files can also be read simultaneously and are considered as technical replicates. Results are saved to CSV, HTML and mzIdentML (in the case of a single mzIdentML input file) files. An MSE analysis of a real sample is presented to compare the results of PAnalyzer and ProteinLynx Global Server. CONCLUSIONS: We present a software tool to deal with the ambiguities that arise in the protein inference process. Key contributions are support for MSE data analysis by ProteinLynx Global Server and technical replicates integration. PAnalyzer is an easy to use multiplatform and free software tool.


Asunto(s)
Proteínas/análisis , Proteómica/métodos , Programas Informáticos , Bases de Datos de Proteínas , Células HEK293 , Humanos , Péptidos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA