Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
2.
Res Sq ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38645014

RESUMEN

We analyzed genomic data derived from the prostate cancer of African and European American men in order to identify differences that may contribute to racial disparity of outcome and that could also define novel therapeutic strategies. In addition to analyzing patient derived next generation sequencing data, we performed FISH based confirmatory studies of Chromodomain helicase DNA-binding protein 1 (CHD1) loss on prostate cancer tissue microarrays. We created CRISPR edited, CHD1 deficient prostate cancer cell lines for genomic, drug sensitivity and functional homologous recombination (HR) activity analysis. We found that subclonal deletion of CHD1 is nearly three times as frequent in prostate tumors of African American men than in men of European ancestry and it associates with rapid disease progression. We further showed that CHD1 deletion is not associated with homologous recombination deficiency associated mutational signatures in prostate cancer. In prostate cancer cell line models CHD1 deletion did not induce HR deficiency as detected by RAD51 foci formation assay or mutational signatures, which was consistent with the moderate increase of olaparib sensitivity. CHD1 deficient prostate cancer cells, however, showed higher sensitivity to talazoparib. CHD1 loss may contribute to worse outcome of prostate cancer in African American men. A deeper understanding of the interaction between CHD1 loss and PARP inhibitor sensitivity will be needed to determine the optimal use of targeted agents such as talazoparib in the context of castration resistant prostate cancer.

3.
NPJ Precis Oncol ; 8(1): 87, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589664

RESUMEN

Homologous recombination (HR) and nucleotide excision repair (NER) are the two most frequently disabled DNA repair pathways in cancer. HR-deficient breast, ovarian, pancreatic and prostate cancers respond well to platinum chemotherapy and PARP inhibitors. However, the frequency of HR deficiency in gastric and esophageal adenocarcinoma (GEA) still lacks diagnostic and functional validation. Using whole exome and genome sequencing data, we found that a significant subset of GEA, but very few colorectal adenocarcinomas, show evidence of HR deficiency by mutational signature analysis (HRD score). High HRD gastric cancer cell lines demonstrated functional HR deficiency by RAD51 foci assay and increased sensitivity to platinum chemotherapy and PARP inhibitors. Of clinical relevance, analysis of three different GEA patient cohorts demonstrated that platinum treated HR deficient cancers had better outcomes. A gastric cancer cell line with strong sensitivity to cisplatin showed HR proficiency but exhibited NER deficiency by two photoproduct repair assays. Single-cell RNA-sequencing revealed that, in addition to inducing apoptosis, cisplatin treatment triggered ferroptosis in a NER-deficient gastric cancer, validated by intracellular GSH assay. Overall, our study provides preclinical evidence that a subset of GEAs harbor genomic features of HR and NER deficiency and may therefore benefit from platinum chemotherapy and PARP inhibitors.

4.
Oncoimmunology ; 13(1): 2324493, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38445083

RESUMEN

Immune checkpoint inhibitor therapy has dramatically improved survival in a significant subset of patients with several solid tumor types. Increasing the number of patients benefitting from this form of therapy is an important translational research goal. Correlations between the composition of the gut microbiome and response to immune checkpoint inhibitor therapy raised the possibility that direct modulation of the gut microbiome may significantly improve the clinical benefit of this treatment. Several lines of observations suggest that tumor-associated carbohydrates, including those recognized as blood group-related glycolipid antigens, such as the Forssman antigen, may be some of the key factors behind this clinical correlation. Such antigens are expressed in human cancer, humans often produce antibodies against those, and they can induce antibody directed cellular cytotoxicity. Importantly, these antibodies are often induced by antigens present in microbes of the gut. If identified, these antibodies could be boosted by appropriate vaccination techniques and thus enhance anti-tumor immunity with minimal side effects.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico , Citotoxicidad Inmunológica , Vacunación
5.
iScience ; 26(11): 108169, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37965133

RESUMEN

Gastroesophageal adenocarcinoma (GEA) is an aggressive malignancy with chromosomal instability (CIN). To understand adaptive responses enabling DNA damage response (DDR) and CIN, we analyzed matched normal, premalignant, and malignant gastric lesions from human specimens and a carcinogen-induced mouse model, observing activation of replication stress, DDR, and p21 in neoplastic progression. In GEA cell lines, expression of DDR markers correlated with ploidy abnormalities, such as number of high-level focal amplifications and whole-genome duplication (WGD). Integrating TP53 status, ploidy abnormalities, and DDR markers into a compositive score helped predict GEA cell lines with enhanced sensitivity to Chk1/2 and Wee1 inhibition, either alone or combined with irinotecan (SN38). We demonstrate that Chk1/2 or Wee1 inhibition combined with SN38/irinotecan shows greater anti-tumor activity in human gastric cancer organoids and an in vivo xenograft mouse model. These findings indicate that specific DDR biomarkers and ploidy abnormalities may predict premalignant progression and response to DDR pathway inhibitors.

6.
Sci Rep ; 13(1): 20567, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996508

RESUMEN

Due to a demonstrated lack of DNA repair deficiencies, clear cell renal cell carcinoma (ccRCC) has not benefitted from targeted synthetic lethality-based therapies. We investigated whether nucleotide excision repair (NER) deficiency is present in an identifiable subset of ccRCC cases that would render those tumors sensitive to therapy targeting this specific DNA repair pathway aberration. We used functional assays that detect UV-induced 6-4 pyrimidine-pyrimidone photoproducts to quantify NER deficiency in ccRCC cell lines. We also measured sensitivity to irofulven, an experimental cancer therapeutic agent that specifically targets cells with inactivated transcription-coupled nucleotide excision repair (TC-NER). In order to detect NER deficiency in clinical biopsies, we assessed whole exome sequencing data for the presence of an NER deficiency associated mutational signature previously identified in ERCC2 mutant bladder cancer. Functional assays showed NER deficiency in ccRCC cells. Some cell lines showed irofulven sensitivity at a concentration that is well tolerated by patients. Prostaglandin reductase 1 (PTGR1), which activates irofulven, was also associated with this sensitivity. Next generation sequencing data of the cell lines showed NER deficiency-associated mutational signatures. A significant subset of ccRCC patients had the same signature and high PTGR1 expression. ccRCC cell line-based analysis showed that NER deficiency is likely present in this cancer type. Approximately 10% of ccRCC patients in the TCGA cohort showed mutational signatures consistent with ERCC2 inactivation associated NER deficiency and also substantial levels of PTGR1 expression. These patients may be responsive to irofulven, a previously abandoned anticancer agent that has minimal activity in NER-proficient cells.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Sesquiterpenos , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Reparación del ADN , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Daño del ADN , Rayos Ultravioleta , Proteína de la Xerodermia Pigmentosa del Grupo D/genética
7.
bioRxiv ; 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37034740

RESUMEN

Gastroesophageal adenocarcinoma (GEA) is an aggressive, often lethal, malignancy that displays marked chromosomal instability (CIN). To understand adaptive responses that enable CIN, we analyzed paired normal, premalignant, and malignant gastric lesions from human specimens and a carcinogen-induced mouse model, observing activation of replication stress, DNA damage response (DDR), and cell cycle regulator p21 in neoplastic progression. In GEA cell lines, expression of DDR markers correlated with ploidy abnormalities, including high-level focal amplifications and whole-genome duplication (WGD). Moreover, high expression of DNA damage marker H2AX correlated with CIN, WGD, and inferior patient survival. By developing and implementing a composite diagnostic score that incorporates TP53 mutation status, ploidy abnormalities, and H2AX expression, among other genomic information, we can identify GEA cell lines with enhanced sensitivity to DDR pathway inhibitors targeting Chk1/2 and Wee1. Anti-tumor properties were further augmented in combination with irinotecan (SN38) but not gemcitabine chemotherapy. These results implicate specific DDR biomarkers and ploidy abnormalities as diagnostic proxy that may predict premalignant progression and response to DDR pathway inhibitors.

8.
bioRxiv ; 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36798363

RESUMEN

Purpose: Due to a demonstrated lack of DNA repair deficiencies, clear cell renal cell carcinoma (ccRCC) has not benefitted from targeted synthetic lethality-based therapies. We investigated whether nucleotide excision repair (NER) deficiency is present in an identifiable subset of ccRCC cases that would render those tumors sensitive to therapy targeting this specific DNA repair pathway aberration. Experimental Design: We used functional assays that detect UV-induced 6-4 pyrimidine-pyrimidone photoproducts to quantify NER deficiency in ccRCC cell lines. We also measured sensitivity to irofulven, an experimental cancer therapeutic agent that specifically targets cells with inactivated transcription-coupled nucleotide excision repair (TC-NER). In order to detect NER deficiency in clinical biopsies, we assessed whole exome sequencing data for the presence of an NER deficiency associated mutational signature previously identified in ERCC2 mutant bladder cancer. Results: Functional assays showed NER deficiency in ccRCC cells. Irofulven sensitivity increased in some cell lines. Prostaglandin reductase 1 (PTGR1), which activates irofulven, was also associated with this sensitivity. Next generation sequencing data of the cell lines showed NER deficiency-associated mutational signatures. A significant subset of ccRCC patients had the same signature and high PTGR1 expression. Conclusions: ccRCC cell line based analysis showed that NER deficiency is likely present in this cancer type. Approximately 10% of ccRCC patients in the TCGA cohort showed mutational signatures consistent with ERCC2 inactivation associated NER deficiency and also substantial levels of PTGR1 expression. These patients may be responsive to irofulven, a previously abandoned anticancer agent that has minimal activity in NER-proficient cells.

9.
Exp Hematol ; 115: 20-29, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36041657

RESUMEN

The molecular mechanisms regulating key fate decisions of hematopoietic stem cells (HSCs) remain incompletely understood. Here, we targeted global shRNA libraries to primary human hematopoietic stem and progenitor cells (HSPCs) to screen for modifiers of self-renewal and differentiation, and identified metastasis-associated 1 (MTA1) as a negative regulator of human HSPC propagation in vitro. Knockdown of MTA1 by independent shRNAs in primary human cord blood (CB) HSPCs led to a cell expansion during culture and a relative accumulation of immature CD34+CD90+ cells with perturbed in vitro differentiation potential. Transplantation experiments in immunodeficient mice revealed a significant reduction in human chimerism in both blood and bone marrow from HSPCs with knockdown of MTA1, possibly caused by reduced maturation of blood cells. We further found that MTA1 associates with the nucleosome remodeling deacetylase (NuRD) complex in human HSPCs, and on knockdown of MTA1, we observed an increase in H3K27Ac marks coupled with a downregulation of genes linked to differentiation toward the erythroid lineage. Together, our findings identify MTA1 as a novel regulator of human HSPCs in vitro and in vivo with critical functions for differentiation commitment.


Asunto(s)
Sangre Fetal , Células Madre Hematopoyéticas , Humanos , Ratones , Animales , Interferencia de ARN , Antígenos CD34 , Diferenciación Celular/genética , Proteínas Represoras/genética , Transactivadores/genética
10.
Clin Cancer Res ; 27(20): 5681-5687, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34380641

RESUMEN

PURPOSE: Homologous recombination (HR) deficiency (HRD) is one of the key determinants of PARP inhibitor response in ovarian cancer, and its accurate detection in tumor biopsies is expected to improve the efficacy of this therapy. Because HRD induces a wide array of genomic aberrations, mutational signatures may serve as a companion diagnostic to identify PARP inhibitor-responsive cases. EXPERIMENTAL DESIGN: From the The Cancer Genome Atlas (TCGA) whole-exome sequencing (WES) data, we extracted different types of mutational signature-based HRD measures, such as the HRD score, genome-wide LOH, and HRDetect trained on ovarian and breast cancer-specific sequencing data. We compared their performance to identify BRCA1/2-deficient cases in the TCGA ovarian cancer cohort and predict survival benefit in platinum-treated, BRCA1/2 wild-type ovarian cancer. RESULTS: We found that the HRD score, which is based on large chromosomal alterations alone, performed similarly well to an ovarian cancer-specific HRDetect, which incorporates mutations on a finer scale as well (AUC = 0.823 vs. AUC = 0.837). In an independent cohort these two methods were equally accurate predicting long-term survival after platinum treatment (AUC = 0.787 vs. AUC = 0.823). We also found that HRDetect trained on ovarian cancer was more accurate than HRDetect trained on breast cancer data (AUC = 0.837 vs. AUC = 0.795; P = 0.0072). CONCLUSIONS: When WES data are available, methods that quantify only large chromosomal alterations such as the HRD score and HRDetect that captures a wider array of HRD-induced genomic aberrations are equally efficient identifying HRD ovarian cancer cases.


Asunto(s)
Recombinación Homóloga/genética , Mutación , Neoplasias Ováricas/genética , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
11.
Clin Cancer Res ; 27(13): 3734-3743, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33947694

RESUMEN

PURPOSE: Poly (ADP ribose)-polymerase (PARP) inhibitors are approved for use in breast, ovarian, prostate, and pancreatic cancers, which are the solid tumor types that most frequently have alterations in key homologous recombination (HR) genes, such as BRCA1/2. However, the frequency of HR deficiency (HRD) in other solid tumor types, including bladder cancer, is less well characterized. EXPERIMENTAL DESIGN: Specific DNA aberration profiles (mutational signatures) are induced by HRD, and the presence of these "genomic scars" can be used to assess the presence or absence of HRD in a given tumor biopsy even in the absence of an observed alteration of an HR gene. Using whole-exome and whole-genome data, we measured various HRD-associated mutational signatures in bladder cancer. RESULTS: We found that a subset of bladder tumors have evidence of HRD. In addition to a small number of tumors with biallelic BRCA1/2 events, approximately 10% of bladder tumors had significant evidence of HRD-associated mutational signatures. Increased levels of HRD signatures were associated with promoter methylation of RBBP8, which encodes CtIP, a key protein involved in HR. CONCLUSIONS: A subset of bladder tumors have genomic features suggestive of HRD and therefore may be more likely to benefit from therapies such as platinum agents and PARP inhibitors that target tumor HRD.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Recombinación Homóloga , Mutación , Neoplasias de la Vejiga Urinaria/genética , Humanos
12.
Sci Rep ; 6: 24685, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27086879

RESUMEN

We report a method enabling intensity-based readout for label-free cellular assays, and realize a reader device with the same footprint as a microtiter plate. For unambiguous resonance intensity measurements in resonance waveguide grating (RWG) sensors, we propose to apply resonances near the substrate cutoff wavelength. This method was validated in bulk refractive index, surface bilayer and G protein-coupled receptor (GPCR) experiments. The significantly reduced size of the reader device opens new opportunities for easy integration into incubators or liquid handling systems.


Asunto(s)
Técnicas Biosensibles/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Imagen Óptica/métodos , Animales , Técnicas Biosensibles/instrumentación , Línea Celular , Línea Celular Tumoral , Fibroblastos/citología , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Membrana Dobles de Lípidos/metabolismo , Imagen Óptica/instrumentación , Ratas , Receptores Acoplados a Proteínas G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA