Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant Physiol ; 191(4): 2170-2184, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36695030

RESUMEN

In eukaryotes, mitochondrial ATP is mainly produced by the oxidative phosphorylation (OXPHOS) system, which is composed of 5 multiprotein complexes (complexes I-V). Analyses of the OXPHOS system by native gel electrophoresis have revealed an organization of OXPHOS complexes into supercomplexes, but their roles and assembly pathways remain unclear. In this study, we characterized an atypical mitochondrial ferredoxin (mitochondrial ferredoxin-like, mFDX-like). This protein was previously found to be part of the bridge domain linking the matrix and membrane arms of the complex I. Phylogenetic analysis suggested that the Arabidopsis (Arabidopsis thaliana) mFDX-like evolved from classical mitochondrial ferredoxins (mFDXs) but lost one of the cysteines required for the coordination of the iron-sulfur (Fe-S) cluster, supposedly essential for the electron transfer function of FDXs. Accordingly, our biochemical study showed that AtmFDX-like does not bind an Fe-S cluster and is therefore unlikely to be involved in electron transfer reactions. To study the function of mFDX-like, we created deletion lines in Arabidopsis using a CRISPR/Cas9-based strategy. These lines did not show any abnormal phenotype under standard growth conditions. However, the characterization of the OXPHOS system demonstrated that mFDX-like is important for the assembly of complex I and essential for the formation of complex I-containing supercomplexes. We propose that mFDX-like and the bridge domain are required for the correct conformation of the membrane arm of complex I that is essential for the association of complex I with complex III2 to form supercomplexes.


Asunto(s)
Arabidopsis , Ferredoxinas , Ferredoxinas/genética , Ferredoxinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Filogenia , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo
2.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33804694

RESUMEN

Iron-containing proteins, including iron-sulfur (Fe-S) proteins, are essential for numerous electron transfer and metabolic reactions. They are present in most subcellular compartments. In plastids, in addition to sustaining the linear and cyclic photosynthetic electron transfer chains, Fe-S proteins participate in carbon, nitrogen, and sulfur assimilation, tetrapyrrole and isoprenoid metabolism, and lipoic acid and thiamine synthesis. The synthesis of Fe-S clusters, their trafficking, and their insertion into chloroplastic proteins necessitate the so-called sulfur mobilization (SUF) protein machinery. In the first part, we describe the molecular mechanisms that allow Fe-S cluster synthesis and insertion into acceptor proteins by the SUF machinery and analyze the occurrence of the SUF components in microalgae, focusing in particular on the green alga Chlamydomonas reinhardtii. In the second part, we describe chloroplastic Fe-S protein-dependent pathways that are specific to Chlamydomonas or for which Chlamydomonas presents specificities compared to terrestrial plants, putting notable emphasis on the contribution of Fe-S proteins to chlorophyll synthesis in the dark and to the fermentative metabolism. The occurrence and evolutionary conservation of these enzymes and pathways have been analyzed in all supergroups of microalgae performing oxygenic photosynthesis.


Asunto(s)
Evolución Biológica , Cloroplastos/genética , Cloroplastos/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Estramenopilos/fisiología , Metabolismo Energético , Redes y Vías Metabólicas
3.
Plant J ; 106(1): 258-274, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33423341

RESUMEN

Iron (Fe) is an essential element for the development and physiology of plants, owing to its presence in numerous proteins involved in central biological processes. Here, we established an exhaustive, manually curated inventory of genes encoding Fe-containing proteins in Arabidopsis thaliana, and summarized their subcellular localization, spatiotemporal expression and evolutionary age. We have currently identified 1068 genes encoding potential Fe-containing proteins, including 204 iron-sulfur (Fe-S) proteins, 446 haem proteins and 330 non-Fe-S/non-haem Fe proteins (updates of this atlas are available at https://conf.arabidopsis.org/display/COM/Atlas+of+Fe+containing+proteins). A fourth class, containing 88 genes for which iron binding is uncertain, is indexed as 'unclear'. The proteins are distributed in diverse subcellular compartments with strong differences per category. Interestingly, analysis of the gene age index showed that most genes were acquired early in plant evolutionary history and have progressively gained regulatory elements, to support the complex organ-specific and development-specific functions necessitated by the emergence of terrestrial plants. With this gene atlas, we provide a valuable and updateable tool for the research community that supports the characterization of the molecular actors and mechanisms important for Fe metabolism in plants. This will also help in selecting relevant targets for breeding or biotechnological approaches aiming at Fe biofortification in crops.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Hierro-Azufre/metabolismo , Arabidopsis/genética , Biofortificación , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas Hierro-Azufre/genética
4.
J Exp Bot ; 72(6): 2014-2044, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33301571

RESUMEN

Iron-sulfur (Fe-S) clusters are prosthetic groups ensuring electron transfer reactions, activating substrates for catalytic reactions, providing sulfur atoms for the biosynthesis of vitamins or other cofactors, or having protein-stabilizing effects. Hence, metalloproteins containing these cofactors are essential for numerous and diverse metabolic pathways and cellular processes occurring in the cytoplasm. Mitochondria are organelles where the Fe-S cluster demand is high, notably because the activity of the respiratory chain complexes I, II, and III relies on the correct assembly and functioning of Fe-S proteins. Several other proteins or complexes present in the matrix require Fe-S clusters as well, or depend either on Fe-S proteins such as ferredoxins or on cofactors such as lipoic acid or biotin whose synthesis relies on Fe-S proteins. In this review, we have listed and discussed the Fe-S-dependent enzymes or pathways in plant mitochondria including some potentially novel Fe-S proteins identified based on in silico analysis or on recent evidence obtained in non-plant organisms. We also provide information about recent developments concerning the molecular mechanisms involved in Fe-S cluster synthesis and trafficking steps of these cofactors from maturation factors to client apoproteins.


Asunto(s)
Proteínas Hierro-Azufre , Mitocondrias , Plantas , Apoproteínas , Hierro/metabolismo , Mitocondrias/metabolismo , Proteínas de Plantas , Azufre/metabolismo
5.
J Exp Bot ; 71(14): 4171-4187, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32240305

RESUMEN

Iron-sulfur (Fe-S) proteins have critical functions in plastids, notably participating in photosynthetic electron transfer, sulfur and nitrogen assimilation, chlorophyll metabolism, and vitamin or amino acid biosynthesis. Their maturation relies on the so-called SUF (sulfur mobilization) assembly machinery. Fe-S clusters are synthesized de novo on a scaffold protein complex and then delivered to client proteins via several transfer proteins. However, the maturation pathways of most client proteins and their specificities for transfer proteins are mostly unknown. In order to decipher the proteins interacting with the Fe-S cluster transfer protein NFU2, one of the three plastidial representatives found in Arabidopsis thaliana, we performed a quantitative proteomic analysis of shoots, roots, and seedlings of nfu2 plants, combined with NFU2 co-immunoprecipitation and binary yeast two-hybrid experiments. We identified 14 new targets, among which nine were validated in planta using a binary bimolecular fluorescence complementation assay. These analyses also revealed a possible role for NFU2 in the plant response to desiccation. Altogether, this study better delineates the maturation pathways of many chloroplast Fe-S proteins, considerably extending the number of NFU2 clients. It also helps to clarify the respective roles of the three NFU paralogs NFU1, NFU2, and NFU3.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Hierro-Azufre , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas Hierro-Azufre/genética , Proteómica
6.
J Exp Bot ; 70(6): 1875-1889, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30785184

RESUMEN

Numerous proteins require a metallic co-factor for their function. In plastids, the maturation of iron-sulfur (Fe-S) proteins necessitates a complex assembly machinery. In this study, we focused on Arabidopsis thaliana NFU1, NFU2, and NFU3, which participate in the final steps of the maturation process. According to the strong photosynthetic defects observed in high chlorophyll fluorescence 101 (hcf101), nfu2, and nfu3 plants, we determined that NFU2 and NFU3, but not NFU1, act immediately upstream of HCF101 for the maturation of [Fe4S4]-containing photosystem I subunits. An additional function of NFU2 in the maturation of the [Fe2S2] cluster of a dihydroxyacid dehydratase was obvious from the accumulation of precursors of the branched-chain amino acid synthesis pathway in roots of nfu2 plants and from the rescue of the primary root growth defect by supplying branched-chain amino acids. The absence of NFU3 in roots precluded any compensation. Overall, unlike their eukaryotic and prokaryotic counterparts, which are specific to [Fe4S4] proteins, NFU2 and NFU3 contribute to the maturation of both [Fe2S2] and [Fe4S4] proteins, either as a relay in conjunction with other proteins such as HCF101 or by directly delivering Fe-S clusters to client proteins. Considering the low number of Fe-S cluster transfer proteins relative to final acceptors, additional targets probably await identification.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Cloroplastos/genética , Proteínas Hierro-Azufre/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Proteínas Hierro-Azufre/metabolismo , Raíces de Plantas/metabolismo
7.
Antioxidants (Basel) ; 7(10)2018 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-30322144

RESUMEN

In plants, the mitochondrial thioredoxin (TRX) system generally comprises only one or two isoforms belonging to the TRX h or o classes, being less well developed compared to the numerous isoforms found in chloroplasts. Unlike most other plant species, Arabidopsis thaliana possesses two TRXo isoforms whose physiological functions remain unclear. Here, we performed a structure⁻function analysis to unravel the respective properties of the duplicated TRXo1 and TRXo2 isoforms. Surprisingly, when expressed in Escherichia coli, both recombinant proteins existed in an apo-monomeric form and in a homodimeric iron⁻sulfur (Fe-S) cluster-bridged form. In TRXo2, the [4Fe-4S] cluster is likely ligated in by the usual catalytic cysteines present in the conserved Trp-Cys-Gly-Pro-Cys signature. Solving the three-dimensional structure of both TRXo apo-forms pointed to marked differences in the surface charge distribution, notably in some area usually participating to protein⁻protein interactions with partners. However, we could not detect a difference in their capacity to reduce nitrogen-fixation-subunit-U (NFU)-like proteins, NFU4 or NFU5, two proteins participating in the maturation of certain mitochondrial Fe-S proteins and previously isolated as putative TRXo1 partners. Altogether, these results suggest that a novel regulation mechanism may prevail for mitochondrial TRXs o, possibly existing as a redox-inactive Fe-S cluster-bound form that could be rapidly converted in a redox-active form upon cluster degradation in specific physiological conditions.

8.
Biochim Biophys Acta Mol Cell Res ; 1865(9): 1250-1259, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29902489

RESUMEN

Numerous proteins require iron­sulfur (Fe-S) clusters as cofactors for their function. Their biogenesis is a multi-step process occurring in the cytosol and mitochondria of all eukaryotes and additionally in plastids of photosynthetic eukaryotes. A basic model of Fe-S protein maturation in mitochondria has been obtained based on studies achieved in mammals and yeast, yet some molecular details, especially of the late steps, still require investigation. In particular, the late-acting biogenesis factors in plant mitochondria are poorly understood. In this study, we expressed the factors belonging to NFU, BOLA, SUFA/ISCA and IBA57 families in the respective yeast mutant strains. Expression of the Arabidopsis mitochondrial orthologs was usually sufficient to rescue the growth defects observed on specific media and/or to restore the abundance or activity of the defective Fe-S or lipoic acid-dependent enzymes. These data demonstrate that the plant mitochondrial counterparts, including duplicated isoforms, likely retained their ancestral functions. In contrast, the SUFA1 and IBA57.2 plastidial isoforms cannot rescue the lysine and glutamate auxotrophies of the respective isa1-isa2Δ and iba57Δ strains or of the isa1-isa2-iba57Δ triple mutant when expressed in combination. This suggests a specialization of the yeast mitochondrial and plant plastidial factors in these late steps of Fe-S protein biogenesis, possibly reflecting substrate-specific interactions in these different compartments.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clonación Molecular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Evolución Molecular , Hierro/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Saccharomyces cerevisiae/genética , Azufre/metabolismo
9.
J Biol Inorg Chem ; 23(4): 567, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29845354

RESUMEN

With the author(s)' decision to opt for Open Choice the copyright of the article changed.

10.
J Biol Inorg Chem ; 23(4): 545-566, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29349662

RESUMEN

One reason why iron is an essential element for most organisms is its presence in prosthetic groups such as hemes or iron-sulfur (Fe-S) clusters, which are notably required for electron transfer reactions. As an organelle with an intense metabolism in plants, chloroplast relies on many Fe-S proteins. This includes those present in the electron transfer chain which will be, in fact, essential for most other metabolic processes occurring in chloroplasts, e.g., carbon fixation, nitrogen and sulfur assimilation, pigment, amino acid, and vitamin biosynthetic pathways to cite only a few examples. The maturation of these Fe-S proteins requires a complex and specific machinery named SUF (sulfur mobilisation). The assembly process can be split in two major steps, (1) the de novo assembly on scaffold proteins which requires ATP, iron and sulfur atoms, electrons, and thus the concerted action of several proteins forming early acting assembly complexes, and (2) the transfer of the preformed Fe-S cluster to client proteins using a set of late-acting maturation factors. Similar machineries, having in common these basic principles, are present in the cytosol and in mitochondria. This review focuses on the currently known molecular details concerning the assembly and roles of Fe-S proteins in plastids.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Plastidios/metabolismo , Hierro/metabolismo , Azufre/metabolismo
11.
Proc Natl Acad Sci U S A ; 112(44): 13735-40, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26483494

RESUMEN

The iron-sulfur cluster (ISC) is an ancient and essential cofactor of many proteins involved in electron transfer and metabolic reactions. In Arabidopsis, three pathways exist for the maturation of iron-sulfur proteins in the cytosol, plastids, and mitochondria. We functionally characterized the role of mitochondrial glutaredoxin S15 (GRXS15) in biogenesis of ISC containing aconitase through a combination of genetic, physiological, and biochemical approaches. Two Arabidopsis T-DNA insertion mutants were identified as null mutants with early embryonic lethal phenotypes that could be rescued by GRXS15. Furthermore, we showed that recombinant GRXS15 is able to coordinate and transfer an ISC and that this coordination depends on reduced glutathione (GSH). We found the Arabidopsis GRXS15 able to complement growth defects based on disturbed ISC protein assembly of a yeast Δgrx5 mutant. Modeling of GRXS15 onto the crystal structures of related nonplant proteins highlighted amino acid residues that after mutation diminished GSH and subsequently ISC coordination, as well as the ability to rescue the yeast mutant. When used for plant complementation, one of these mutant variants, GRXS15K83/A, led to severe developmental delay and a pronounced decrease in aconitase activity by approximately 65%. These results indicate that mitochondrial GRXS15 is an essential protein in Arabidopsis, required for full activity of iron-sulfur proteins.


Asunto(s)
Arabidopsis/metabolismo , Glutarredoxinas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Arabidopsis/crecimiento & desarrollo , Prueba de Complementación Genética
12.
Biochim Biophys Acta ; 1853(6): 1513-27, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25264274

RESUMEN

Glutaredoxins (Grxs) are major oxidoreductases involved in the reduction of glutathionylated proteins. Owing to the capacity of several class I Grxs and likely all class II Grxs to incorporate iron-sulfur (Fe-S) clusters, they are also linked to iron metabolism. Most Grxs bind [2Fe-2S] clusters which are oxidatively- and reductively-labile and have identical ligation, involving notably external glutathione. However, subtle differences in the structural organization explain that class II Fe-S Grxs, having more labile and solvent-exposed clusters, can accept Fe-S clusters and transfer them to client proteins, whereas class I Fe-S Grxs usually do not. From the observed glutathione disulfide-mediated Fe-S cluster degradation, the current view is that the more stable Fe-S clusters found in class I Fe-S Grxs might constitute a sensor of oxidative stress conditions by modulating their activity. Indeed, in response to an oxidative signal, inactive holoforms i.e., without disulfide reductase activity, should be converted to active apoforms. Among class II Fe-S Grxs, monodomain Grxs likely serve as carrier proteins for the delivery of preassembled Fe-S clusters to acceptor proteins in organelles. Another proposed function is the repair of Fe-S clusters. From their cytoplasmic and/or nuclear localization, multidomain Grxs function in signalling pathways. In particular, they regulate iron homeostasis in yeast species by modulating the activity of transcription factors and eventually forming heterocomplexes with BolA-like proteins in response to the cellular iron status. We provide an overview of the biochemical and structural properties of Fe-S cluster-loaded Grxs in relation to their hypothetical or confirmed associated functions. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.


Asunto(s)
Glutarredoxinas/química , Glutatión/química , Proteínas Hierro-Azufre/química , Estructura Cuaternaria de Proteína , Secuencia de Aminoácidos , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Humanos , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Homología de Secuencia de Aminoácido
13.
Plant Sci ; 224: 112-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24908512

RESUMEN

Carbon assimilation, a key determinant of plant biomass production, is under circadian regulation. Light and temperature are major inputs of the plant clock that control various daily rhythms. Such rhythms confer adaptive advantages to the organisms by adjusting their metabolism in anticipation of environmental fluctuations. The relationship between the circadian clock and nutrition extends far beyond the regulation of carbon assimilation as mineral nutrition, and specially iron homeostasis, is regulated through this mechanism. Conversely, iron status was identified as a new and important input regulating the central oscillator, raising the question of the nature of the Fe-dependent signal that modulates the period of the circadian clock. Several lines of evidence strongly suggest that fully developed and functional chloroplasts as well as early light signalling events, involving phytochromes, are essential to couple the clock to Fe responses. Nevertheless, the exact nature of the signal, which most probably involves unknown or not yet fully characterized elements of the chloroplast-to-nucleus retrograde signalling pathway, remains to be identified. Finally, this regulation may also involves epigenetic components.


Asunto(s)
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Relojes Circadianos , Ritmo Circadiano , Hierro/metabolismo , Luz , Fotoperiodo , Fitocromo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA