Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 13(1): 22524, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110561

RESUMEN

There is no strong and reliable predictive biomarker in head and neck squamous cell carcinoma (HNSCC) for EGFR inhibitors. We aimed to identify predictive and pharmacodynamic biomarkers of efficacy of afatinib, a pan-HER tyrosine kinase inhibitor, in a window-of-opportunity trial (NCT01415674). Multi-omics analyses were carried out on pre-treatment biopsy and surgical specimen for biological assessment of afatinib activity. Sixty-one treatment-naïve and operable HNSCC patients were randomised to afatinib 40 mg/day for 21-28 days versus no treatment. Afatinib produced a high rate of metabolic response. Responders had a higher expression of pERK1/2 (P = 0.02) and lower expressions of pHER4 (P = 0.03) and pRB1 (P = 0.002) in pre-treatment biopsy compared to non-responders. At the cellular level, responders displayed an enrichment of tumor-infiltrating B cells under afatinib (P = 0.02). At the molecular level, NF-kappa B signaling was over-represented among upregulated genes in non-responders (P < 0.001; FDR = 0.01). Although exploratory, phosphoproteomics-based biomarkers deserve further investigations as predictors of afatinib efficacy.


Asunto(s)
Neoplasias de Cabeza y Cuello , Quinazolinas , Humanos , Afatinib/uso terapéutico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Biomarcadores , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
2.
Allergy ; 78(3): 682-696, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36210648

RESUMEN

BACKGROUND: Numerous patient-based studies have highlighted the protective role of immunoglobulin E-mediated allergic diseases on glioblastoma (GBM) susceptibility and prognosis. However, the mechanisms behind this observation remain elusive. Our objective was to establish a preclinical model able to recapitulate this phenomenon and investigate the role of immunity underlying such protection. METHODS: An immunocompetent mouse model of allergic airway inflammation (AAI) was initiated before intracranial implantation of mouse GBM cells (GL261). RAG1-KO mice served to assess tumor growth in a model deficient for adaptive immunity. Tumor development was monitored by MRI. Microglia were isolated for functional analyses and RNA-sequencing. Peripheral as well as tumor-associated immune cells were characterized by flow cytometry. The impact of allergy-related microglial genes on patient survival was analyzed by Cox regression using publicly available datasets. RESULTS: We found that allergy establishment in mice delayed tumor engraftment in the brain and reduced tumor growth resulting in increased mouse survival. AAI induced a transcriptional reprogramming of microglia towards a pro-inflammatory-like state, uncovering a microglia gene signature, which correlated with limited local immunosuppression in glioma patients. AAI increased effector memory T-cells in the circulation as well as tumor-infiltrating CD4+ T-cells. The survival benefit conferred by AAI was lost in mice devoid of adaptive immunity. CONCLUSION: Our results demonstrate that AAI limits both tumor take and progression in mice, providing a preclinical model to study the impact of allergy on GBM susceptibility and prognosis, respectively. We identify a potentiation of local and adaptive systemic immunity, suggesting a reciprocal crosstalk that orchestrates allergy-induced immune protection against GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Hipersensibilidad , Ratones , Animales , Glioblastoma/genética , Glioblastoma/patología , Neoplasias Encefálicas/patología , Glioma/genética , Glioma/patología , Microglía/patología , Hipersensibilidad/patología , Ratones Endogámicos C57BL
3.
iScience ; 25(2): 103842, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35198895

RESUMEN

Glioblastoma (GBM) is the most aggressive primary brain tumor characterized by infiltrative growth of malignant glioma cells into the surrounding brain parenchyma. In this study, our analysis of GBM patient cohorts revealed a significantly higher expression of Glycosyltransferase 8 domain containing 1 (GLT8D1) compared to normal brain tissue and could be associated with impaired patient survival. Increased in vitro expression of GLT8D1 significantly enhanced migration of two different sphere-forming GBM cell lines. By in silico analysis we predicted the 3D-structure as well as the active site residues of GLT8D1. The introduction of point mutations in the predicted active site reduced its glycosyltransferase activity in vitro and consequently impaired GBM tumor cell migration. Examination of GLT8D1 interaction partners by LC-MS/MS implied proteins associated with cytoskeleton and intracellular transport as potential substrates. In conclusion, we demonstrated that the enzymatic activity of glycosyltransferase GLT8D1 promotes GBM cell migration.

4.
Clin Res Hepatol Gastroenterol ; 45(5): 101553, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33183998

RESUMEN

BACKGROUND: A promising avenue for cancer treatment is exacerbating the deregulation of the DNA repair machinery that would normally protect the genome. To address the applicability of poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) combined with radiotherapy for the treatment of hepatocellular carcinoma (HCC) two approaches were used: firstly, the in vitro sensitivity to the PARPi Veliparib and Talazoparib +/- radiation exposure was determined in liver cell lines and the impact of the HBV X protein (HBx) that deregulates cellular DNA damage repair via SMC5/6 degradation was investigated. Secondly, PARP expression profiles and DNA damage levels using the surrogate marker gammaH2AX were assessed in a panel of control liver vs HCC tissues. METHODS: Cell cytotoxicity was measured by clonogenic survival or relative cell growth and the DNA damage response using immunological-based techniques in Hep3B, PLC/PRF/5, HepG2- and HepaRG-derived models. Transcriptome changes due to HBx expression vs SMC6 loss were assessed by RNA sequencing in HepaRG-derived models. PARP and PARG transcripts (qPCR) and PARP1, H2AX and gammaH2AX protein levels (RPPA) were compared in control liver vs HBV-, HCV-, alcohol- and non-alcoholic steatohepatitis-associated HCC (tumor/peritumor) tissues. RESULTS: PARPi cytotoxicity was significantly enhanced when combined with X-rays (2Gy) with Talazoparib having a greater impact than Veliparib in most in vitro models. HBx expression significantly lowered survival, probably driven by SMC5/6 loss based on the transcriptome analysis and higher DNA damage levels. PARP1 and PARP2 transcript levels were significantly higher in tumor than peritumor and control tissues. The HBV/HCV/alcohol-associated tumor tissues studied had reduced H2AX but higher gammaH2AX protein levels compared to peritumor and control tissues providing evidence of increased DNA damage during liver disease progression. CONCLUSIONS: These proof-of-concept experiments support PARPi alone or combined with radiotherapy for HCC treatment, particularly for HBV-associated tumors, that warrant further investigation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/virología , Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación , Línea Celular Tumoral , Terapia Combinada , Hepatitis B/complicaciones , Hepatitis C/complicaciones , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/virología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología
5.
EBioMedicine ; 61: 103049, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33096476

RESUMEN

BACKGROUND: Cervical cancer (CC) remains a leading cause of gynaecological cancer-related mortality world wide and constitutes the third most common malignancy in women. The RAIDs consortium (http://www.raids-fp7.eu/) conducted a prospective European study [BioRAIDs (NCT02428842)] with the objective to stratify CC patients for innovative treatments. A "metagene" of genomic markers in the PI3K pathway and epigenetic regulators had been previously associated with poor outcome [2]. METHODS: To detect new, more specific, targets for treatment of patients who resist standard chemo-radiation, a high-dimensional Cox model was applied to define dominant molecular variants, copy number variations, and reverse phase protein arrays (RPPA). FINDINGS: Survival analysis on 89 patients with all omics data available, suggested loss-of-function (LOF) or activating molecular alterations in nine genes to be candidate biomarkers for worse prognosis in patients treated by chemo-radiation while LOF of ATRX, MED13 as well as CASP8 were associated with better prognosis. When protein expression data by RPPA were factored in, the supposedly low molecular weight and nuclear form, of beta-catenin, phosphorylated in Ser552 (pß-Cat552), ranked highest for good prognosis, while pß-Cat675 was associated with worse prognosis. INTERPRETATION: These findings call for molecularly targeted treatments involving p53, Wnt pathway, PI3K pathway, and epigenetic regulator genes. Pß-Cat552 and pß-Cat675 may be useful biomarkers to predict outcome to chemo-radiation, which targets the DNA repair axis. FUNDING: European Union's Seventh Program for research, technological development and demonstration (agreement N°304,810), the Fondation ARC pour la recherche contre le cancer.


Asunto(s)
Biomarcadores de Tumor , Marcadores Genéticos , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Biología Computacional , Variaciones en el Número de Copia de ADN , Susceptibilidad a Enfermedades , Femenino , Heterogeneidad Genética , Humanos , Mutación , Estadificación de Neoplasias , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Pronóstico , Recurrencia , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/terapia , Secuenciación del Exoma
6.
Reprod Biol Endocrinol ; 11: 100, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24148967

RESUMEN

BACKGROUND: The ability to predict the developmental and implantation ability of embryos remains a major goal in human assisted-reproductive technology (ART) and most ART laboratories use morphological criteria to evaluate the oocyte competence despite the poor predictive value of this analysis. Transcriptomic and proteomic approaches on somatic cells surrounding the oocyte (granulosa cells, cumulus cells [CCs]) have been proposed for the identification of biomarkers of oocyte competence. We propose to use a Reverse Phase Protein Array (RPPA) approach to investigate new potential biomarkers of oocyte competence in human CCs at the protein level, an approach that is already used in cancer research to identify biomarkers in clinical diagnostics. METHODS: Antibodies targeting proteins of interest were validated for their utilisation in RPPA by measuring siRNA-mediated knockdown efficiency in HEK293 cells in parallel with Western blotting (WB) and RPPA from the same lysates. The proteins of interests were measured by RPPA across 13 individual human CCs from four patients undergoing intracytoplasmic sperm injection procedure. RESULTS: The knockdown efficiency of VCL, RGS2 and SRC were measured in HEK293 cells by WB and by RPPA and were acceptable for VCL and SRC proteins. The antibodies targeting these proteins were used for their detection in human CCs by RPPA. The detection of protein VCL, SRC and ERK2 (by using an antibody already validated for RPPA) was then carried out on individual CCs and signals were detected for each individual sample. After normalisation by VCL, we showed that the level of expression of ERK2 was almost the same across the 13 individual CCs while the level of expression of SRC was different between the 13 individual CCs of the four patients and between the CCs from one individual patient. CONCLUSIONS: The exquisite sensitivity of RPPA allowed detection of specific proteins in individual CCs. Although the validation of antibodies for RPPA is labour intensive, RRPA is a sensitive and quantitative technique allowing the detection of specific proteins from very small quantities of biological samples. RPPA may be of great interest in clinical diagnostics to predict the oocyte competence prior to transfer of the embryo using robust protein biomarkers expressed by CCs.


Asunto(s)
Células del Cúmulo/metabolismo , Análisis por Matrices de Proteínas/métodos , Biomarcadores/metabolismo , Células HEK293 , Humanos , Oocitos/metabolismo , Oocitos/fisiología , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA