Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Adv Exp Med Biol ; 1438: 33-36, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37845436

RESUMEN

Hypoxia-inducible factor 1 (HIF-1) is a major player in the oxygen sensor system as well as a transcription factor. HIF-1 is also associated in the pathogenesis of many brain diseases including Alzheimer's disease (AD), epilepsy and stroke. HIF-1 regulates the expression of many genes such as those involved in glycolysis, erythropoiesis, angiogenesis and proliferation in hypoxic condition. Despite several studies, the mechanism through which HIF-1 confers neuroprotection remains unclear, one of them is modulating metabolic profiles and inflammatory pathways. Characterization of the neuroprotective role of HIF-1 may be through its stabilization and the regulation of target genes that aid in the early adaptation to the oxidative stressors. It is interesting to note that mounting data from recent years point to an additional crucial regulatory role for hypoxia-inducible factors (HIFs) in inflammation. HIFs in immune cells regulate the production of glycolytic energy as well as innate immunity, pro-inflammatory gene expression, and mediates activation of pro-survival pathways. The present review highlights the contribution of HIF-1 to neuroprotection where inflammation is the crucial factor in the pathogenesis contributing to neural death. The potential mechanisms that contribute to neuroprotection as a result of the downstream targets of HIF-1α are discussed. Such mechanisms include those mediated through IL-10, an anti-inflammatory molecule involved in activating pro-survival signaling mechanisms via AKT/ERK and JAK/STAT pathways.


Asunto(s)
Regulación de la Expresión Génica , Neuroprotección , Humanos , Transducción de Señal , Inflamación/genética , Fenotipo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética
2.
Metabolism ; 144: 155589, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37182789

RESUMEN

BACKGROUND: Evidence is accumulating that growth hormone (GH) protects against the development of steatosis and progression of non-alcoholic fatty liver disease (NAFLD). GH may control steatosis indirectly by altering systemic insulin sensitivity and substrate delivery to the liver and/or by the direct actions of GH on hepatocyte function. APPROACH: To better define the hepatocyte-specific role of GH receptor (GHR) signaling on regulating steatosis, we used a mouse model with adult-onset, hepatocyte-specific GHR knockdown (aHepGHRkd). To prevent the reduction in circulating insulin-like growth factor 1 (IGF1) and the subsequent increase in GH observed after aHepGHRkd, subsets of aHepGHRkd mice were treated with adeno-associated viral vectors (AAV) driving hepatocyte-specific expression of IGF1 or a constitutively active form of STAT5b (STAT5bCA). The impact of hepatocyte-specific modulation of GHR, IGF1 and STAT5b on carbohydrate and lipid metabolism was studied across multiple nutritional states and in the context of hyperinsulinemic:euglycemic clamps. RESULTS: Chow-fed male aHepGHRkd mice developed steatosis associated with an increase in hepatic glucokinase (GCK) and ketohexokinase (KHK) expression and de novo lipogenesis (DNL) rate, in the post-absorptive state and in response to refeeding after an overnight fast. The aHepGHRkd-associated increase in hepatic KHK, but not GCK and steatosis, was dependent on hepatocyte expression of carbohydrate response element binding protein (ChREBP), in re-fed mice. Interestingly, under clamp conditions, aHepGHRkd also increased the rate of DNL and expression of GCK and KHK, but impaired insulin-mediated suppression of hepatic glucose production, without altering plasma NEFA levels. These effects were normalized with AAV-mediated hepatocyte expression of IGF1 or STAT5bCA. Comparison of the impact of AAV-mediated hepatocyte IGF1 versus STAT5bCA in aHepGHRkd mice across multiple nutritional states, indicated the restorative actions of IGF1 are indirect, by improving systemic insulin sensitivity, independent of changes in the liver transcriptome. In contrast, the actions of STAT5b are due to the combined effects of raising IGF1 and direct alterations in the hepatocyte gene program that may involve suppression of BCL6 and FOXO1 activity. However, the direct and IGF1-dependent actions of STAT5b cannot fully account for enhanced GCK activity and lipogenic gene expression observed after aHepGHRkd, suggesting other GHR-mediated signals are involved. CONCLUSION: These studies demonstrate hepatocyte GHR-signaling controls hepatic glycolysis, DNL, steatosis and hepatic insulin sensitivity indirectly (via IGF1) and directly (via STAT5b). The relative contribution of these indirect and direct actions of GH on hepatocytes is modified by insulin and nutrient availability. These results improve our understanding of the physiologic actions of GH on regulating adult metabolism to protect against NAFLD progression.


Asunto(s)
Hormona de Crecimiento Humana , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Masculino , Ratones , Animales , Lipogénesis/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Hormona del Crecimiento/metabolismo , Insulina/metabolismo , Glucólisis , Glucosa/metabolismo , Hormona de Crecimiento Humana/metabolismo
3.
Cancer Discov ; 11(8): 2072-2093, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33757970

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is characterized by accumulation of neutral lipids and adipogenic transdifferentiation. We assessed adipokine expression in ccRCC and found that tumor tissues and patient plasma exhibit obesity-dependent elevations of the adipokine chemerin. Attenuation of chemerin by several approaches led to significant reduction in lipid deposition and impairment of tumor cell growth in vitro and in vivo. A multi-omics approach revealed that chemerin suppresses fatty acid oxidation, preventing ferroptosis, and maintains fatty acid levels that activate hypoxia-inducible factor 2α expression. The lipid coenzyme Q and mitochondrial complex IV, whose biogeneses are lipid-dependent, were found to be decreased after chemerin inhibition, contributing to lipid reactive oxygen species production. Monoclonal antibody targeting chemerin led to reduced lipid storage and diminished tumor growth, demonstrating translational potential of chemerin inhibition. Collectively, the results suggest that obesity and tumor cells contribute to ccRCC through the expression of chemerin, which is indispensable in ccRCC biology. SIGNIFICANCE: Identification of a hypoxia-inducible factor-dependent adipokine that prevents fatty acid oxidation and causes escape from ferroptosis highlights a critical metabolic dependency unique in the clear cell subtype of kidney cancer. Targeting lipid metabolism via inhibition of a soluble factor is a promising pharmacologic approach to expand therapeutic strategies for patients with ccRCC.See related commentary by Reznik et al., p. 1879.This article is highlighted in the In This Issue feature, p. 1861.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Carcinoma de Células Renales/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico , Obesidad/complicaciones , Animales , Carcinoma de Células Renales/complicaciones , Línea Celular Tumoral/efectos de los fármacos , Ácidos Grasos/metabolismo , Femenino , Ferroptosis/efectos de los fármacos , Humanos , Neoplasias Renales/complicaciones , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Ratones Desnudos
4.
Am J Physiol Gastrointest Liver Physiol ; 318(2): G322-G335, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31905022

RESUMEN

Bile acid receptors regulate the metabolic and immune functions of circulating enterohepatic bile acids. This process is disrupted by administration of parenteral nutrition (PN), which may induce progressive hepatic injury for unclear reasons, especially in the newborn, leading to PN-associated liver disease. To explore the role of bile acid signaling on neonatal hepatic function, we initially observed that Takeda G protein receptor 5 (TGR5)-specific bile acids were negatively correlated with worsening clinical disease markers in the plasma of human newborns with prolonged PN exposure. To test our resulting hypothesis that TGR5 regulates critical liver functions to PN exposure, we used TGR5 receptor deficient mice (TGR5-/-). We observed PN significantly increased liver weight, cholestasis, and serum hepatic stress enzymes in TGR5-/- mice compared with controls. Mechanistically, PN reduced bile acid synthesis genes in TGR5-/-. Serum bile acid composition revealed that PN increased unconjugated primary bile acids and secondary bile acids in TGR5-/- mice, while increasing conjugated primary bile acid levels in TGR5-competent mice. Simultaneously, PN elevated hepatic IL-6 expression and infiltrating macrophages in TGR5-/- mice. However, the gut microbiota of TGR5-/- mice compared with WT mice following PN administration displayed highly elevated levels of Bacteroides and Parabacteroides, and possibly responsible for the elevated levels of secondary bile acids in TGR5-/- animals. Intestinal bile acid transporters expression was unchanged. Collectively, this suggests TGR5 signaling specifically regulates fundamental aspects of liver bile acid homeostasis during exposure to PN. Loss of TGR5 is associated with biochemical evidence of cholestasis in both humans and mice on PN.NEW & NOTEWORTHY Parenteral nutrition is associated with deleterious metabolic outcomes in patients with prolonged exposure. Here, we demonstrate that accelerated cholestasis and parental nutrition-associated liver disease (PNALD) may be associated with deficiency of Takeda G protein receptor 5 (TGR5) signaling. The microbiome is responsible for production of secondary bile acids that signal through TGR5. Therefore, collectively, these data support the hypothesis that a lack of established microbiome in early life or under prolonged parenteral nutrition may underpin disease development and PNALD.


Asunto(s)
Hepatopatías/etiología , Hepatopatías/fisiopatología , Nutrición Parenteral/efectos adversos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiología , Animales , Ácidos y Sales Biliares/metabolismo , Colestasis , Femenino , Microbioma Gastrointestinal , Regulación de la Expresión Génica/fisiología , Humanos , Recién Nacido , Interleucina-6/metabolismo , Pruebas de Función Hepática , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tamaño de los Órganos , Transducción de Señal/genética
5.
Sci Rep ; 9(1): 19180, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31844152

RESUMEN

Cancer cells in culture rely on glutamine as an anaplerotic substrate to replenish tricarboxylic acid (TCA) cycle intermediates that have been consumed. but it is uncertain whether cancers in vivo depend on glutamine for anaplerosis. Here, following in vivo infusions of [13C5]-glutamine in mice bearing subcutaneous colon cancer xenografts, we showed substantial amounts of infused [13C5]-glutamine enters the TCA cycle in the tumors. Consistent with our prior observation that colorectal cancers (CRCs) with oncogenic mutations in the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic (PIK3CA) subunit are more dependent on glutamine than CRCs with wild type PIK3CA, labeling from glutamine to most TCA cycle intermediates was higher in PIK3CA-mutant subcutaneous xenograft tumors than in wild type PIK3CA tumors. Moreover, using orthotopic mouse colon tumors estalished from human CRC cells or patient-derived xenografts, we demonstrated substantial amounts of infused [13C5]-glutamine enters the TCA cycle in the tumors and tumors utilize anaplerotic glutamine to a greater extent than adjacent normal colon tissues. Similar results were seen in spontaneous colon tumors arising in genetically engineered mice. Our studies provide compelling evidence CRCs utilizes glutamine to replenish the TCA cycle in vivo, suggesting that targeting glutamine metabolism could be a therapeutic approach for CRCs, especially for PIK3CA-mutant CRCs.


Asunto(s)
Ciclo del Ácido Cítrico , Neoplasias Colorrectales/metabolismo , Glutamina/metabolismo , Animales , Isótopos de Carbono/sangre , Fosfatidilinositol 3-Quinasa Clase I/genética , Neoplasias Colorrectales/sangre , Femenino , Glutamina/sangre , Células HCT116 , Humanos , Cinética , Ratones Desnudos , Mutación/genética , Tejido Subcutáneo/patología , Especificidad por Sustrato , Ensayos Antitumor por Modelo de Xenoinjerto
6.
J Immunol ; 202(4): 1265-1286, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30659108

RESUMEN

Macrophages (MΦs) are heterogeneous and metabolically flexible, with metabolism strongly affecting immune activation. A classic response to proinflammatory activation is increased flux through glycolysis with a downregulation of oxidative metabolism, whereas alternative activation is primarily oxidative, which begs the question of whether targeting glucose metabolism is a viable approach to control MΦ activation. We created a murine model of myeloid-specific glucose transporter GLUT1 (Slc2a1) deletion. Bone marrow-derived MΦs (BMDM) from Slc2a1M-/- mice failed to uptake glucose and demonstrated reduced glycolysis and pentose phosphate pathway activity. Activated BMDMs displayed elevated metabolism of oleate and glutamine, yet maximal respiratory capacity was blunted in MΦ lacking GLUT1, demonstrating an incomplete metabolic reprogramming. Slc2a1M-/- BMDMs displayed a mixed inflammatory phenotype with reductions of the classically activated pro- and anti-inflammatory markers, yet less oxidative stress. Slc2a1M-/- BMDMs had reduced proinflammatory metabolites, whereas metabolites indicative of alternative activation-such as ornithine and polyamines-were greatly elevated in the absence of GLUT1. Adipose tissue MΦs of lean Slc2a1M-/- mice had increased alternative M2-like activation marker mannose receptor CD206, yet lack of GLUT1 was not a critical mediator in the development of obesity-associated metabolic dysregulation. However, Ldlr-/- mice lacking myeloid GLUT1 developed unstable atherosclerotic lesions. Defective phagocytic capacity in Slc2a1M-/- BMDMs may have contributed to unstable atheroma formation. Together, our findings suggest that although lack of GLUT1 blunted glycolysis and the pentose phosphate pathway, MΦ were metabolically flexible enough that inflammatory cytokine release was not dramatically regulated, yet phagocytic defects hindered MΦ function in chronic diseases.


Asunto(s)
Modelos Animales de Enfermedad , Transportador de Glucosa de Tipo 1/metabolismo , Macrófagos/metabolismo , Animales , Transportador de Glucosa de Tipo 1/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo
7.
Am J Physiol Gastrointest Liver Physiol ; 315(5): G685-G698, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30118352

RESUMEN

Negative energy balance is a prevalent feature of cystic fibrosis (CF). Pancreatic insufficiency, elevated energy expenditure, lung disease, and malnutrition, all characteristic of CF, contribute to the negative energy balance causing low body-growth phenotype. As low body weight and body mass index strongly correlate with poor lung health and survival of patients with CF, improving energy balance is an important clinical goal (e.g., high-fat diet). CF mouse models also exhibit negative energy balance (growth retardation and high energy expenditure), independent from exocrine pancreatic insufficiency, lung disease, and malnutrition. To improve energy balance through increased caloric intake and reduced energy expenditure, we disrupted leptin signaling by crossing the db/db leptin receptor allele with mice carrying the R117H Cftr mutation. Compared with db/db mice, absence of leptin signaling in CF mice (CF db/db) resulted in delayed and moderate hyperphagia with lower de novo lipogenesis and lipid deposition, producing only moderately obese CF mice. Greater body length was found in db/db mice but not in CF db/db, suggesting CF-dependent effect on bone growth. The db/db genotype resulted in lower energy expenditure regardless of Cftr genotype leading to obesity. Despite the db/db genotype, the CF genotype exhibited high respiratory quotient indicating elevated carbohydrate oxidation, thus limiting carbohydrates for lipogenesis. In summary, db/db-linked hyperphagia, elevated lipogenesis, and morbid obesity were partially suppressed by reduced CFTR activity. CF mice still accrued large amounts of adipose tissue in contrast to mice fed a high-fat diet, thus highlighting the importance of dietary carbohydrates and not simply fat for energy balance in CF. NEW & NOTEWORTHY We show that cystic fibrosis (CF) mice are able to accrue fat under conditions of carbohydrate overfeeding, increased lipogenesis, and decreased energy expenditure, although length was unaffected. High-fat diet feeding failed to improve growth in CF mice. Morbid db/db-like obesity was reduced in CF double-mutant mice by reduced CFTR activity.


Asunto(s)
Tejido Adiposo/patología , Fibrosis Quística/complicaciones , Leptina/metabolismo , Lipogénesis , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Animales , Dieta de Carga de Carbohidratos/efectos adversos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/genética , Transducción de Señal
8.
J Biol Chem ; 293(9): 3399-3409, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29317502

RESUMEN

Phosphoenolpyruvate carboxykinase (Pck1) is a metabolic enzyme that is integral to the gluconeogenic and glyceroneogenic pathways. However, Pck1's role in macrophage metabolism and function is unknown. Using stable isotopomer MS analysis in a mouse model with a myeloid cell-specific Pck1 deletion, we show here that this deletion increases the proinflammatory phenotype in macrophages. Incubation of LPS-stimulated bone marrow-derived macrophages (BMDM) with [U-13C]glucose revealed reduced 13C labeling of citrate and malate and increased 13C labeling of lactate in Pck1-deleted bone marrow-derived macrophages. We also found that the Pck1 deletion in the myeloid cells increases reactive oxygen species (ROS). Of note, this altered macrophage metabolism increased expression of the M1 cytokines TNFα, IL-1ß, and IL-6. We therefore conclude that Pck1 contributes to M1 polarization in macrophages. Our findings provide important insights into the factors determining the macrophage inflammatory response and indicate that Pck1 activity contributes to metabolic reprogramming and polarization in macrophages.


Asunto(s)
Eliminación de Gen , Macrófagos/enzimología , Fenotipo , Fosfoenolpiruvato Carboxiquinasa (GTP)/deficiencia , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Animales , Polaridad Celular , Glucosa/metabolismo , Glutamina/metabolismo , Inflamación/enzimología , Inflamación/genética , Inflamación/inmunología , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ácido Palmítico/metabolismo , Células RAW 264.7
9.
Nat Commun ; 8(1): 1769, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29176561

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is histologically defined by its lipid and glycogen-rich cytoplasmic deposits. Alterations in the VHL tumor suppressor stabilizing the hypoxia-inducible factors (HIFs) are the most prevalent molecular features of clear cell tumors. The significance of lipid deposition remains undefined. We describe the mechanism of lipid deposition in ccRCC by identifying the rate-limiting component of mitochondrial fatty acid transport, carnitine palmitoyltransferase 1A (CPT1A), as a direct HIF target gene. CPT1A is repressed by HIF1 and HIF2, reducing fatty acid transport into the mitochondria, and forcing fatty acids to lipid droplets for storage. Droplet formation occurs independent of lipid source, but only when CPT1A is repressed. Functionally, repression of CPT1A is critical for tumor formation, as elevated CPT1A expression limits tumor growth. In human tumors, CPT1A expression and activity are decreased versus normal kidney; and poor patient outcome associates with lower expression of CPT1A in tumors in TCGA. Together, our studies identify HIF control of fatty acid metabolism as essential for ccRCC tumorigenesis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma de Células Renales/metabolismo , Ácidos Grasos/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Renales/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinogénesis , Carcinoma de Células Renales/genética , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neoplasias Renales/genética , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/metabolismo
10.
Cell Metab ; 23(6): 1078-1092, 2016 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-27304508

RESUMEN

Circulating levels of undercarboxylated and bioactive osteocalcin double during aerobic exercise at the time levels of insulin decrease. In contrast, circulating levels of osteocalcin plummet early during adulthood in mice, monkeys, and humans of both genders. Exploring these observations revealed that osteocalcin signaling in myofibers is necessary for adaptation to exercise by favoring uptake and catabolism of glucose and fatty acids, the main nutrients of myofibers. Osteocalcin signaling in myofibers also accounts for most of the exercise-induced release of interleukin-6, a myokine that promotes adaptation to exercise in part by driving the generation of bioactive osteocalcin. We further show that exogenous osteocalcin is sufficient to enhance the exercise capacity of young mice and to restore to 15-month-old mice the exercise capacity of 3-month-old mice. This study uncovers a bone-to-muscle feedforward endocrine axis that favors adaptation to exercise and can reverse the age-induced decline in exercise capacity.


Asunto(s)
Adaptación Fisiológica , Fibras Musculares Esqueléticas/metabolismo , Osteocalcina/metabolismo , Condicionamiento Físico Animal , Transducción de Señal , Envejecimiento/metabolismo , Animales , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Interleucina-6/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos
11.
Mol Imaging Biol ; 18(3): 360-7, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26567114

RESUMEN

PURPOSE: Altered metabolism, including increased glycolysis and de novo lipogenesis, is one of the hallmarks of cancer. Radiolabeled nutrients, including glucose and acetate, are extensively used for the detection of various tumors, including hepatocellular carcinomas (HCCs). High signal of [(11)C]acetate positron emission tomography (PET) in tumors is often considered to be associated with increased expression of fatty acid synthase (FASN) and increased de novo lipogenesis in tumor tissues. Defining a subset of tumors with increased [(11)C]acetate PET signal and thus increased lipogenesis was suggested to help select a group of patients, who may benefit from lipogenesis-targeting therapies. PROCEDURES: To investigate whether [(11)C]acetate PET imaging is truly associated with increased de novo lipogenesis along with hepatocarcinogenesis, we performed [(11)C]acetate PET imaging in wild-type mice as well as two mouse HCC models, induced by myrAKT/Ras(V12) (AKT/Ras) and PIK3CA(1047R)/c-Met (PI3K/Met) oncogene combinations. In addition, we analyzed FASN expression and de novo lipogenesis rate in these mouse liver tissues. RESULTS: We found that while HCCs induced by AKT/Ras co-expression showed high levels of [(11)C]acetate PET signal compared to normal liver, HCCs induced by PI3K/Met overexpression did not. Intriguingly, elevated FASN expression and increased de novo lipogenesis rate were observed in both AKT/Ras and PI3K/Met HCCs. CONCLUSION: Altogether, our study suggests that [(11)C]acetate PET imaging can be a useful tool for imaging of a subset of HCCs. However, at molecular level, the increased [(11)C]acetate PET imaging is not always associated with increased FASN expression or de novo lipogenesis.


Asunto(s)
Acetatos/química , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/metabolismo , Lipogénesis , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/metabolismo , Tomografía de Emisión de Positrones/métodos , Animales , Radioisótopos de Carbono , Carcinoma Hepatocelular/patología , Colesterol/metabolismo , Gotas Lipídicas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Triglicéridos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas ras/metabolismo
12.
Mol Cancer Ther ; 13(10): 2288-302, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25122066

RESUMEN

Docetaxel chemotherapy remains a standard of care for metastatic castration-resistant prostate cancer (CRPC). Docetaxel modestly increases survival, yet results in frequent occurrence of side effects and resistant disease. An alternate chemotherapy with greater efficacy and minimal side effects is needed. Acquisition of metabolic aberrations promoting increased survival and metastasis in CRPC cells includes constitutive activation of Akt, loss of adenosine monophosphate-activated protein kinase (AMPK) activity due to Ser-485/491 phosphorylation, and overexpression of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMG-CoAR). We report that combination of simvastatin and metformin, within pharmacologic dose range (500 nmol/L to 4 µmol/L simvastatin and 250 µmol/L to 2 mmol/L metformin), significantly and synergistically reduces C4-2B3/B4 CRPC cell viability and metastatic properties, with minimal adverse effects on normal prostate epithelial cells. Combination of simvastatin and metformin decreased Akt Ser-473 and Thr-308 phosphorylation and AMPKα Ser-485/491 phosphorylation; increased Thr-172 phosphorylation and AMPKα activity, as assessed by increased Ser-79 and Ser-872 phosphorylation of acetyl-CoA carboxylase and HMG-CoAR, respectively; decreased HMG-CoAR activity; and reduced total cellular cholesterol and its synthesis in both cell lines. Studies of C4-2B4 orthotopic NCr-nu/nu mice further demonstrated that combination of simvastatin and metformin (3.5-7.0 µg/g body weight simvastatin and 175-350 µg/g body weight metformin) daily by oral gavage over a 9-week period significantly inhibited primary ventral prostate tumor formation, cachexia, bone metastasis, and biochemical failure more effectively than 24 µg/g body weight docetaxel intraperitoneally injected every 3 weeks, 7.0 µg/g/day simvastatin, or 350 µg/g/day metformin treatment alone, with significantly less toxicity and mortality than docetaxel, establishing combination of simvastatin and metformin as a promising chemotherapeutic alternative for metastatic CRPC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/secundario , Metformina/farmacología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Simvastatina/farmacología , Animales , Anticolesterolemiantes/administración & dosificación , Anticolesterolemiantes/farmacología , Movimiento Celular/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacología , Masculino , Metformina/administración & dosificación , Ratones , Metástasis de la Neoplasia , Neoplasias de la Próstata Resistentes a la Castración/patología , Simvastatina/administración & dosificación
13.
J Biol Chem ; 289(9): 5510-7, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24398675

RESUMEN

Sterol regulatory element-binding protein-1 (SREBP-1) is a key transcription factor that regulates genes in the de novo lipogenesis and glycolysis pathways. The levels of SREBP-1 are significantly elevated in obese patients and in animal models of obesity and type 2 diabetes, and a vast number of studies have implicated this transcription factor as a contributor to hepatic lipid accumulation and insulin resistance. However, its role in regulating carbohydrate metabolism is poorly understood. Here we have addressed whether SREBP-1 is needed for regulating glucose homeostasis. Using RNAi and a new generation of adenoviral vector, we have silenced hepatic SREBP-1 in normal and obese mice. In normal animals, SREBP-1 deficiency increased Pck1 and reduced glycogen deposition during fed conditions, providing evidence that SREBP-1 is necessary to regulate carbohydrate metabolism during the fed state. Knocking SREBP-1 down in db/db mice resulted in a significant reduction in triglyceride accumulation, as anticipated. However, mice remained hyperglycemic, which was associated with up-regulation of gluconeogenesis gene expression as well as decreased glycolysis and glycogen synthesis gene expression. Furthermore, glycogen synthase activity and glycogen accumulation were significantly reduced. In conclusion, silencing both isoforms of SREBP-1 leads to significant changes in carbohydrate metabolism and does not improve insulin resistance despite reducing steatosis in an animal model of obesity and type 2 diabetes.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Gluconeogénesis/fisiología , Glucógeno/biosíntesis , Hígado/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Técnicas de Silenciamiento del Gen , Glucógeno/genética , Masculino , Ratones , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
14.
Diabetes ; 62(7): 2183-94, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23423574

RESUMEN

We measured the mRNA and protein expression of the key gluconeogenic enzymes in human liver biopsy specimens and found that only hepatic pyruvate carboxylase protein levels related strongly with glycemia. We assessed the role of pyruvate carboxylase in regulating glucose and lipid metabolism in rats through a loss-of-function approach using a specific antisense oligonucleotide (ASO) to decrease expression predominantly in liver and adipose tissue. Pyruvate carboxylase ASO reduced plasma glucose concentrations and the rate of endogenous glucose production in vivo. Interestingly, pyruvate carboxylase ASO also reduced adiposity, plasma lipid concentrations, and hepatic steatosis in high fat-fed rats and improved hepatic insulin sensitivity. Pyruvate carboxylase ASO had similar effects in Zucker Diabetic Fatty rats. Pyruvate carboxylase ASO did not alter de novo fatty acid synthesis, lipolysis, or hepatocyte fatty acid oxidation. In contrast, the lipid phenotype was attributed to a decrease in hepatic and adipose glycerol synthesis, which is important for fatty acid esterification when dietary fat is in excess. Tissue-specific inhibition of pyruvate carboxylase is a potential therapeutic approach for nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes.


Asunto(s)
Adiposidad/fisiología , Gluconeogénesis/fisiología , Resistencia a la Insulina/fisiología , Hígado/enzimología , Piruvato Carboxilasa/metabolismo , Tejido Adiposo/enzimología , Adulto , Animales , Hígado Graso/enzimología , Femenino , Glicerol/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley , Ratas Zucker
15.
Free Radic Biol Med ; 52(6): 1043-53, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22245097

RESUMEN

Our previous work in perfused rat livers has demonstrated that 4-hydroxynonenal (HNE) is catabolized predominantly via ß oxidation. Therefore, we hypothesized that perturbations in ß oxidation, such as diet-altered fatty acid oxidation activity, could lead to changes in HNE levels. To test our hypothesis, we (i) developed a simple and sensitive GC/MS method combined with mass isotopomer analysis to measure HNE and HNE analogs, 4-oxononenal (ONE) and 1,4-dihydroxynonene (DHN), and (ii) investigated the effects of four diets (standard, low-fat, ketogenic, and high-fat mix) on HNE, ONE, and DHN concentrations in rat livers. Our results showed that livers from rats fed the ketogenic diet or high-fat mix diet had high ω-6 polyunsaturated fatty acid concentrations and markers of oxidative stress. However, high concentrations of HNE (1.6 ± 0.5 nmol/g) and ONE (0.9 ± 0.2 nmol/g) were found only in livers from rats fed the high-fat mix diet. Livers from rats fed the ketogenic diet had low HNE (0.8 ± 0.1 nmol/g) and ONE (0.4 ± 0.07 nmol/g), similar to rats fed the standard diet. A possible explanation is that the predominant pathway of HNE catabolism (i.e., ß oxidation) is activated in the liver by the ketogenic diet. This is consistent with a 10-fold decrease in malonyl-CoA in livers from rats fed a ketogenic diet compared to a standard diet. The accelerated catabolism of HNE lowers HNE and HNE analog concentrations in livers from rats fed the ketogenic diet. On the other hand, rats fed the high-fat mix diet had high rates of lipid synthesis and low rates of fatty acid oxidation, resulting in the slowing down of the catabolic disposal of HNE and HNE analogs. Thus, decreased HNE catabolism from a high-fat mix diet induces high concentrations of HNE and HNE analogs. The results of this work suggest a potential causal relationship to metabolic syndrome induced by Western diets (i.e., high-fat mix), as well as the effects of a ketogenic diet on the catabolism of lipid peroxidation products in liver.


Asunto(s)
Aldehídos/metabolismo , Grasas Insaturadas en la Dieta/metabolismo , Peroxidación de Lípido , Hígado/metabolismo , Aldehídos/química , Alquenos/química , Alquenos/metabolismo , Animales , Biomarcadores/metabolismo , Dieta Alta en Grasa/efectos adversos , Dieta Cetogénica/efectos adversos , Glutatión/química , Glutatión/metabolismo , Masculino , Espectrometría de Masas , Oxidación-Reducción , Estrés Oxidativo , Ratas , Ratas Wistar
16.
J Biol Chem ; 286(46): 40013-24, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21917928

RESUMEN

Overexpression of the Ski oncogene induces oncogenic transformation of chicken embryo fibroblasts (CEFs). However, unlike most other oncogene-transformed cells, Ski-transformed CEFs (Ski-CEFs) do not display the classical Warburg effect. On the contrary, Ski transformation reduced lactate production and glucose utilization in CEFs. Compared with CEFs, Ski-CEFs exhibited enhanced TCA cycle activity, fatty acid catabolism through ß-oxidation, glutamate oxidation, oxygen consumption, as well as increased numbers and mass of mitochondria. Interestingly, expression of PPARγ, a key transcription factor that regulates adipogenesis and lipid metabolism, was dramatically elevated at both the mRNA and protein levels in Ski-CEFs. Accordingly, PPARγ target genes that are involved in lipid uptake, transport, and oxidation were also markedly up-regulated by Ski. Knocking down PPARγ in Ski-CEFs by RNA interference reversed the elevated expression of these PPARγ target genes, as well as the shift to oxidative metabolism and the increased mitochondrial biogenesis. Moreover, we found that Ski co-immunoprecipitates with PPARγ and co-activates PPARγ-driven transcription.


Asunto(s)
Pollos/metabolismo , Glucólisis/fisiología , PPAR gamma/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Adipogénesis/fisiología , Animales , Embrión de Pollo , Pollos/genética , Técnicas de Silenciamiento del Gen , Metabolismo de los Lípidos/fisiología , Mitocondrias/genética , Mitocondrias/metabolismo , Oxidación-Reducción , Consumo de Oxígeno/fisiología , PPAR gamma/genética , Proteínas Proto-Oncogénicas/genética , Transcripción Genética/fisiología
17.
J Lipid Res ; 52(7): 1352-62, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21504969

RESUMEN

Previously, we have shown that Pck1 expression in mammary gland adipocytes and white adipose tissue maintains triglyceride stores through glyceroneogenesis, and these lipids were used for synthesis of milk triglycerides during lactation. Reduced milk triglycerides during lactation resulted in patterning of the newborn for insulin resistance. In this study, the role of Pck1 in mammary gland epithelial cells was analyzed. The developmental expression of Pck1 decreased in isolated mouse mammary gland epithelial cells through development and during lactation. Using HC11, a clonal mammary epithelial cell line, we found that both Janus kinase 2 signal transducers and activators of transcription 5 and the AKT pathways contributed to the repression of Pck1 mRNA by prolactin. These pathways necessitate three accessory factor regions of the Pck1 promoter for repression by prolactin. Using [U-(13)C(6)]glucose, [U-(13)C(3)]pyruvate, and [U-(13)C(3)]glycerol in HC11 cells, we determined that Pck1 functions in the pathway for the conversion of gluconeogenic precursors to glucose and contributes to glycerol-3-phosphate synthesis through glyceroneogenesis. Therefore, Pck1 plays an important role in both the mammary gland adipocytes and epithelial cells during lactation.


Asunto(s)
Células Epiteliales/enzimología , Glándulas Mamarias Animales/citología , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Animales , Línea Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/genética , Silenciador del Gen/efectos de los fármacos , Ratones , Fosfoenolpiruvato Carboxiquinasa (GTP)/deficiencia , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Prolactina/farmacología , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Factor de Transcripción STAT5/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
18.
Methods Mol Biol ; 708: 147-57, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21207288

RESUMEN

Researchers view analysis of the citric acid cycle (CAC) intermediates as a metabolomic approach to identifying unexpected correlations between apparently related and unrelated pathways of metabolism. Relationships of the CAC intermediates, as measured by their concentrations and relative ratios, offer useful information to understanding interrelationships between the CAC and metabolic pathways under various physiological and pathological conditions. This chapter presents a relatively simple method that is sensitive for simultaneously measuring concentrations of CAC intermediates (relative and absolute) and other related intermediates of energy metabolism using gas chromatography-mass spectrometry.


Asunto(s)
Ciclo del Ácido Cítrico , Cromatografía de Gases y Espectrometría de Masas , Metabolómica/métodos , Cloroformo/química , Metanol/química , Perfusión , Plasma/química , Extractos de Tejidos/química , Agua/química
19.
J Cereb Blood Flow Metab ; 28(12): 1907-16, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18648382

RESUMEN

Neuroprotective properties of ketosis may be related to the upregulation of hypoxia inducible factor (HIF)-1alpha, a primary constituent associated with hypoxic angiogenesis and a regulator of neuroprotective responses. The rationale that the utilization of ketones by the brain results in elevation of intracellular succinate, a known inhibitor of prolyl hydroxylase (the enzyme responsible for the degradation of HIF-1alpha) was deemed as a potential mechanism of ketosis on the upregulation of HIF-1alpha. The neuroprotective effect of diet-induced ketosis (3 weeks of feeding a ketogenic diet), as pretreatment, on infarct volume, after reversible middle cerebral artery occlusion (MCAO), and the upregulation of HIF-1alpha were investigated. The effect of beta-hydroxybutyrate (BHB), as a pretreatment, via intraventricular infusion (4 days of infusion before stroke) was also investigated following MCAO. Levels of HIF-1alpha and Bcl-2 (anti-apoptotic protein) proteins and succinate content were measured. A 55% or 70% reduction in infarct volume was observed with BHB infusion or diet-induced ketosis, respectively. The levels of HIF-1alpha and Bcl-2 proteins increased threefold with diet-induced ketosis; BHB infusions also resulted in increases in these proteins. As hypothesized, succinate content increased by 55% with diet-induced ketosis and fourfold with BHB infusion. In conclusion, the biochemical link between ketosis and the stabilization of HIF-1alpha is through the elevation of succinate, and both HIF-1alpha stabilization and Bcl-2 upregulation play a role in ketone-induced neuroprotection in the brain.


Asunto(s)
Edema Encefálico/prevención & control , Infarto Encefálico/prevención & control , Isquemia Encefálica/dietoterapia , Encéfalo/metabolismo , Dieta Cetogénica , Cuerpos Cetónicos/biosíntesis , Animales , Encéfalo/enzimología , Edema Encefálico/enzimología , Edema Encefálico/metabolismo , Infarto Encefálico/enzimología , Infarto Encefálico/metabolismo , Isquemia Encefálica/enzimología , Isquemia Encefálica/metabolismo , Modelos Animales de Enfermedad , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Cetosis/metabolismo , Masculino , Fármacos Neuroprotectores/metabolismo , Procolágeno-Prolina Dioxigenasa/biosíntesis , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , ARN Mensajero/biosíntesis , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ácido Succínico/metabolismo
20.
Brain Res ; 1071(1): 208-17, 2006 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-16412392

RESUMEN

Resuscitation from cardiac arrest results in reperfusion injury that leads to increased postresuscitation mortality and delayed neuronal death. One of the many consequences of resuscitation from cardiac arrest is a derangement of energy metabolism and the loss of adenylates, impairing the tissue's ability to regain proper energy balance. In this study, we investigated the effects of adenosine (ADO) on the recovery of the brain from 12 min of ischemia using a rat model of cardiac arrest and resuscitation. Compared to the untreated group, treatment with adenosine (7.2 mg/kg) initiated immediately after resuscitation increased the proportion of rats surviving to 4 days and significantly delayed hippocampal CA1 neuronal loss. Brain blood flow was increased significantly in the adenosine-treated rats 1 h after cardiac arrest and resuscitation. Adenosine-treated rats exhibited less edema in cortex, brainstem and hippocampus during the first 48 h of recovery. Adenosine treatment significantly lowered brain temperature during recovery, and a part of the neuroprotective effects of adenosine treatment could be ascribed to adenosine-induced hypothermia. With this dose, adenosine may have a delayed transient effect on the restoration of the adenylate pool (AXP = ATP + ADP + AMP) 24 h after cardiac arrest and resuscitation. Our findings suggested that improved postischemic brain blood flow and ADO-induced hypothermia, rather than adenylate supplementation, may be the two major contributors to the neuroprotective effects of adenosine following cardiac arrest and resuscitation. Although adenosine did not prevent eventual CA1 neuronal loss in the long term, it did delay neuronal loss and promoted long-term survival. Thus, adenosine or specific agonists of adenosine receptors should be evaluated as adjuncts to broaden the window of opportunity in the treatment of the reperfusion injury following cardiac arrest and resuscitation.


Asunto(s)
Adenosina/uso terapéutico , Antiarrítmicos/uso terapéutico , Paro Cardíaco/terapia , Hipocampo/patología , Neuronas/efectos de los fármacos , Resucitación/métodos , Análisis de Varianza , Animales , Temperatura Corporal/efectos de los fármacos , Temperatura Corporal/fisiología , Edema Encefálico/etiología , Edema Encefálico/patología , Edema Encefálico/prevención & control , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/etiología , Recuento de Células/métodos , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Modelos Animales de Enfermedad , Paro Cardíaco/inducido químicamente , Paro Cardíaco/complicaciones , Paro Cardíaco/patología , Masculino , Neuronas/fisiología , Examen Físico/métodos , Ratas , Ratas Wistar , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Flujo Sanguíneo Regional/efectos de los fármacos , Flujo Sanguíneo Regional/fisiología , Reperfusión/métodos , Factores de Tiempo , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA