Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36982510

RESUMEN

Apetala2/ethylene response factor (AP2/ERF) is one of the largest families of transcription factors, regulating growth, development, and stress response in plants. Several studies have been conducted to clarify their roles in Arabidopsis and rice. However, less research has been carried out on maize. In this review, we systematically identified the AP2/ERFs in the maize genome and summarized the research progress related to AP2/ERF genes. The potential roles were predicted from rice homologs based on phylogenetic and collinear analysis. The putative regulatory interactions mediated by maize AP2/ERFs were discovered according to integrated data sources, implying that they involved complex networks in biological activities. This will facilitate the functional assignment of AP2/ERFs and their applications in breeding strategy.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes , Filogenia , Fitomejoramiento , Etilenos , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Arabidopsis/genética
2.
Plant Biotechnol J ; 17(12): 2286-2298, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31033158

RESUMEN

Group VII ethylene response factors (ERFVIIs) play important roles in ethylene signalling and plant responses to flooding. However, natural ERFVII variations in maize (ZmERFVIIs) that are directly associated with waterlogging tolerance have not been reported. Here, a candidate gene association analysis of the ZmERFVII gene family showed that a waterlogging-responsive gene, ZmEREB180, was tightly associated with waterlogging tolerance. ZmEREB180 expression specifically responded to waterlogging and was up-regulated by ethylene; in addition, its gene product localized to the nucleus. Variations in the 5'-untranslated region (5'-UTR) and mRNA abundance of this gene under waterlogging conditions were significantly associated with survival rate (SR). Ectopic expression of ZmEREB180 in Arabidopsis increased the SR after submergence stress, and overexpression of ZmEREB180 in maize also enhanced the SR after long-term waterlogging stress, apparently through enhanced formation of adventitious roots (ARs) and regulation of antioxidant levels. Transcriptomic assays of the transgenic maize line under normal and waterlogged conditions further provided evidence that ZmEREB180 regulated AR development and reactive oxygen species homeostasis. Our study provides direct evidence that a ZmERFVII gene is involved in waterlogging tolerance. These findings could be applied directly to breed waterlogging-tolerant maize cultivars and improve our understanding of waterlogging stress.


Asunto(s)
Etilenos/farmacología , Inundaciones , Genes de Plantas , Estrés Fisiológico , Zea mays/genética , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas , Plantas Modificadas Genéticamente , Plantones/genética , Plantones/fisiología , Agua , Zea mays/fisiología
3.
Proteomics ; 15(1): 135-47, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25316036

RESUMEN

Soil waterlogging is one of the major abiotic stresses affecting maize grain yields. To understand the molecular mechanisms underlying waterlogging tolerance in maize, the iTRAQ LC-MS/MS technique was employed to map the proteomes of seedling root cells of the A3237 (tolerant inbred) and A3239 (sensitive inbred) lines under control and waterlogging conditions. Among the 3318 proteins identified, 211 were differentially abundant proteins (DAPs), of which 81 were specific to A3237 and 57 were specific to A3239. These DAPs were categorized into 11 groups that were closely related to the plant stress response, including metabolism, energy, transport, and disease/defense. In the waterlogged A3237 root cells, NADP-malic enzyme, glutamate decarboxylase, coproporphyrinogen III oxidase, GSH S-transferase, GSH dehydrogenase, and xyloglucan endotransglycosylase 6 were specifically accumulated to manage energy consumption, maintain pH levels, and minimize oxidative damage. The evaluations of five specific physiological parameters (alcohol dehydrogenase activity and GSH, malondialdehyde, adenosine 5'-triphosphate, and nicotinamide adenine dinucleotide concentrations) were in agreement with the proteomic results. Moreover, based on the proteomic assay, eight representative genes encoding DAPs were selected for validation at the transcriptional level. qRT-PCR revealed that the expression levels of these genes correlated with their observed protein abundance. These findings shed light on the complex mechanisms underlying waterlogging tolerance in maize. All MS data have been deposited into the ProteomeXchange with the identifier PXD001125 http://proteomecentral.proteomexchange.org/dataset/PXD001125.


Asunto(s)
Proteínas de Plantas/metabolismo , Raíces de Plantas/fisiología , Plantones/fisiología , Agua/metabolismo , Zea mays/fisiología , Cromatografía Liquida , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Raíces de Plantas/genética , Proteómica , Plantones/genética , Estrés Fisiológico , Espectrometría de Masas en Tándem , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA